Startseite Analysis of the streamline-diffusion finite element method on a piecewise uniform mesh for a convection-diffusion problem with exponential layers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Analysis of the streamline-diffusion finite element method on a piecewise uniform mesh for a convection-diffusion problem with exponential layers

  • M. Stynes und L. Tobiska
Veröffentlicht/Copyright: 15. November 2010
Journal of Numerical Mathematics
Aus der Zeitschrift Band 9 Heft 1

Abstract

On the unit square, we consider a singularly perturbed convection-diffusion boundary value problem whose solution has two exponential boundary layers. We apply the streamline-diffusion finite element method with piecewise bilinear trial functions on a Shishkin mesh of O(N2) points and show that the error in the discrete space between the computed solution and the interpolant of the true solution is, uniformly in the diffusion parameter ɛ, of order ɛ1/2N–1 lnN + N3/2 in the usual streamline-diffusion norm. This includes an L2-norm error estimate of order O(N3/2) in the convection–dominated case ɛN1 ln–2N. As a corollary we prove that the method is convergent of order N–1/2 ln3/2N (again uniformly in ɛ) in the local L norm on the fine part of the mesh (i.e., inside the boundary layers). This local L estimate within the layers can be improved to order ɛ1/2N–1/2 ln3/2N+N–1 ln1/2N, uniformly in ɛ, away from the corner layer.

Received: 2000-03-21
Revised: 2000-11-15
Published Online: 2010-11-15
Published in Print: 2001-March

© VSP 2001

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/JNMA.2001.59/html
Button zum nach oben scrollen