Startseite Interplay between thermodynamics and geometry in the adsorption of non-spherical nanoparticles at liquid/liquid interfaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Interplay between thermodynamics and geometry in the adsorption of non-spherical nanoparticles at liquid/liquid interfaces

  • Jordi Faraudo und Fernando Bresme
Veröffentlicht/Copyright: 1. Juni 2005
Veröffentlichen auch Sie bei De Gruyter Brill
Journal of Non-Equilibrium Thermodynamics
Aus der Zeitschrift Band 29 Heft 4

Abstract

The adsorption of non-spherical nanoparticles at liquid/liquid interfaces is considered in the framework of the classical theory of capillarity. Spheroidal nanoparticles with aspect ratio α larger than a critical value αc cannot be adsorbed at a liquid/liquid interface. The critical shape αc (depending on the liquid-liquid surface tension and liquid-particle-liquid line tension) is computed explicitly using a simple expression for the Free Energy. The results show that particles can be surface active, that is, can be adsorbed at the interface according to its shape. In addition, the dependence of the line tension with the size of the liquid-particle-liquid contact line is also discussed.

:

Corresponding author ()

References

1 Rowlinson, J.S., Widom, B., Molecular Theory of Capillarity, Oxford University Press, Belfast, 1989.Suche in Google Scholar

2 Aveyard, R., Clint, J.H., Particle wettability and line tension, J. Chem. Soc. Faraday Trans., 92 (1996), 85–89.10.1039/ft9969200085Suche in Google Scholar

3 Drelich, J., The Significance and Magnitude of the Line Tension in Three-Phase (Solid/Liquid/Fluid) Systems, Colloids and Surfaces A, 116 (1996), 43–54.10.1016/0927-7757(96)03651-5Suche in Google Scholar

4 Bresme, F., Quirke, N., Computer simulation study of the wetting behaviour and line tension of nanometer size particulates at a liquid-vapour interface, Phys. Rev. Lett., 80 (1998), 3791–3794.10.1103/PhysRevLett.80.3791Suche in Google Scholar

5 Bresme, F., Quirke, N., Computer Simulation of Wetting and Drying of Solid Particulates at a Liquid Vapour Interface, J. Chem. Phys., 110 (1999), 3536.10.1063/1.478221Suche in Google Scholar

6 Bresme, F., Quirke, N., Nanoparticulates at Liquid-Liquid Interfaces, Phys. Chem. Chem. Phys., 1 (1999), 2149–2155.10.1039/a901006hSuche in Google Scholar

7 Faraudo, J., Bresme, F., Stability of particles adsorbed at liquid/.uid interfaces: shape effects induced by the line tension, J. Chem. Phys., 118 (2003), 6518–6528.10.1063/1.1559728Suche in Google Scholar

8 Bresme, F., Integral Equation study of the surface tension of Colloidal-Fluid Spherical Interfaces, J. Phys. Chem. B, 106 (2002), 7852–7859.10.1021/jp0205721Suche in Google Scholar

9 Abramowitz, M., Stegun, I., Handbook of Mathematical functions, 9th edition, Dover publications Inc., New York, 1970.Suche in Google Scholar

10 Adams, M., Fraden, S., Phase behavior of mixtures of rods (tobacco mosaic virus) and spheres (polyethylene oxide, bovine serum albumin), Biophys. J., 74 (1998), 669–677.10.1016/S0006-3495(98)77826-9Suche in Google Scholar

Published Online: 2005-06-01
Published in Print: 2004-12-01

© Walter de Gruyter

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/JNETDY.2004.064/html
Button zum nach oben scrollen