Startseite Singular Integrals in Weighted Lebesgue Spaces with Variable Exponent
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Singular Integrals in Weighted Lebesgue Spaces with Variable Exponent

  • V. Kokilashvili und S. Samko
Veröffentlicht/Copyright: 26. Februar 2010
Veröffentlichen auch Sie bei De Gruyter Brill
Georgian Mathematical Journal
Aus der Zeitschrift Band 10 Heft 1

Abstract

In the weighted Lebesgue space with variable exponent the boundedness of the Calderón–Zygmund operator is established. The variable exponent 𝑝(𝑥) is assumed to satisfy the logarithmic Dini condition and the exponent β of the power weight ρ(𝑥) = |𝑥 – 𝑥0|β is related only to the value 𝑝(𝑥0). The mapping properties of Cauchy singular integrals defined on the Lyapunov curve and on curves of bounded rotation are also investigated within the framework of the above-mentioned weighted space.

Received: 2002-11-25
Published Online: 2010-02-26
Published in Print: 2003-March

© Heldermann Verlag

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/GMJ.2003.145/pdf
Button zum nach oben scrollen