Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Asymptotics of class numbers for progressions and for fundamental discriminants
-
Nicole Raulf
Veröffentlicht/Copyright:
12. März 2009
Abstract
The aim of this paper is to prove the asymptotic behaviour of class numbers h(d) in the case that the class numbers are ordered by the size of the fundamental solution of Pell's equation t2–du2 = 4 and the considered discriminants d belong to an arithmetic progression. As an application of this result we prove a result for the asymptotic behaviour of class numbers for fundamental discriminants.
Revised: 2007-02-26
Published Online: 2009-03-12
Published in Print: 2009-March
© de Gruyter 2009
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Homotopy theory of small diagrams over large categories
- A classification of transitive ovoids, spreads, and m-systems of polar spaces
- Frobenius complements of exponent dividing 2m · 9
- Asymptotics of class numbers for progressions and for fundamental discriminants
- A difference characterization of Besov and Triebel-Lizorkin spaces on RD-spaces
- A topological version of the Bergman property
- A unified treatment of certain majorization results on eigenvalues and singular values of matrices
- Finite index subgroups of conjugacy separable groups
- A Bohr-like compactification and summability of Fourier series
Artikel in diesem Heft
- Homotopy theory of small diagrams over large categories
- A classification of transitive ovoids, spreads, and m-systems of polar spaces
- Frobenius complements of exponent dividing 2m · 9
- Asymptotics of class numbers for progressions and for fundamental discriminants
- A difference characterization of Besov and Triebel-Lizorkin spaces on RD-spaces
- A topological version of the Bergman property
- A unified treatment of certain majorization results on eigenvalues and singular values of matrices
- Finite index subgroups of conjugacy separable groups
- A Bohr-like compactification and summability of Fourier series