Abstract
We prove a rank 3 criterion for the simple connectedness of certain subsets of buildings and we give two applications of this criterion. The first generalizes a result of Tits for Chevalley groups to 3-spherical Kac-Moody groups. The second is the proof of the simple connectedness of certain flipflop geometries introduced in [Bennett C., Gramlich R., Hoffman C., Shpectorov S.: Curtis-Phan-Tits theory. In: Groups, combinatorics and geometry (Durham, 2001). World Sci. Publishing, River Edge, NJ, 2003, 13–29].
Received: 2005-09-12
Revised: 2005-11-17
Accepted: 2005-11-21
Published Online: 2007-11-19
Published in Print: 2007-11-20
© Walter de Gruyter
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- On the simple connectedness of certain subsets of buildings
- A generalization of Kronecker function rings and Nagata rings
- Cotilting and tilting modules over Prüfer domains
- Derivations of multi-loop algebras
- Injective and colon properties of ideals in integral domains
- A Lewis Correspondence for submodular groups
- Spreads of PG(3, q) and ovoids of polar spaces
- Meromorphic continuation of multivariable Euler products
Artikel in diesem Heft
- On the simple connectedness of certain subsets of buildings
- A generalization of Kronecker function rings and Nagata rings
- Cotilting and tilting modules over Prüfer domains
- Derivations of multi-loop algebras
- Injective and colon properties of ideals in integral domains
- A Lewis Correspondence for submodular groups
- Spreads of PG(3, q) and ovoids of polar spaces
- Meromorphic continuation of multivariable Euler products