Startseite Forecasting of Categorical Time Series Using a Regression Model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Forecasting of Categorical Time Series Using a Regression Model

  • Helmut Pruscha und Axel Göttlein
Veröffentlicht/Copyright: 10. März 2010
Veröffentlichen auch Sie bei De Gruyter Brill
Stochastics and Quality Control
Aus der Zeitschrift Band 18 Heft 2

Abstract

This paper deals with time series of categorical or ordinal variables, which are combined with time varying covariates. The conditional expectations (probabilities) are modelled as a regression model in a GLM-type manner, its parameters are estimated using a (partial) likelihood-approach. Special attention is given to the multivariate and the cumulative logistic regression model, with a regression term defined by a recursive scheme. The main concern is directed at forecasts for such time series. Using an approximation formula for conditional expectations l-step predictors are developed. Bias and mean square errors are estimated by using expansion formulas and by employing Box-Jenkins as well as nonparametric methods. The procedures proposed are numerically applied to a data set of yearly forest health inventories.

Published Online: 2010-03-10
Published in Print: 2003-October

© Heldermann Verlag

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/EQC.2003.223/html
Button zum nach oben scrollen