Startseite Ricci flow of almost non-negatively curved three manifolds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ricci flow of almost non-negatively curved three manifolds

  • Miles Simon
Veröffentlicht/Copyright: 31. März 2009
Veröffentlichen auch Sie bei De Gruyter Brill
Journal für die reine und angewandte Mathematik
Aus der Zeitschrift Band 2009 Heft 630

Abstract

In this paper we study the evolution of almost non-negatively curved (possibly singular) three dimensional metric spaces by Ricci flow. The non-negatively curved metric spaces which we consider arise as limits of smooth Riemannian manifolds (Mi, ig), i ∈ ℕ, whose Ricci curvature is bigger than –1/i, and whose diameter is less than d0 (independent of i) and whose volume is bigger than v0 > 0 (independent of i). We show for such spaces, that a solution to Ricci flow exists for a short time t ∈ (0, T), that the solution is smooth for t > 0, and has Ricci (g(t)) ≧ 0 and Riem (g(t)) ≧ c/t for t ∈ (0, T) (for some constant c = c(v0, d0, n)). This allows us to classify the topological type and the differential structure of the limit manifold (in view of the theorem of Hamilton [J. Diff. Geom. 24: 153–179, 1986] on closed three manifolds with non-negative Ricci curvature).

Received: 2007-04-13
Revised: 2008-01-23
Published Online: 2009-03-31
Published in Print: 2009-May

© Walter de Gruyter Berlin · New York 2009

Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/CRELLE.2009.038/html
Button zum nach oben scrollen