Startseite Bifurcation currents in holomorphic dynamics on
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bifurcation currents in holomorphic dynamics on

  • Giovanni Bassanelli EMAIL logo und François Berteloot
Veröffentlicht/Copyright: 1. August 2007
Veröffentlichen auch Sie bei De Gruyter Brill
Journal für die reine und angewandte Mathematik
Aus der Zeitschrift Band 2007 Heft 608

Abstract

We use pluri-potential theory to study the bifurcations of holomorphic families {ƒλ}λ∈X of rational maps on or endomorphisms of . To this purpose we establish some formulas for L(ƒλ) and ddcL(ƒλ) where L(ƒλ) is the sum of the Lyapunov exponents of ƒλ with respect to the maximal entropy measure. We show that the bifurcation current ddcL(ƒλ) both detects the instability of repulsive cycles and the interaction between critical and Julia sets.

For families of rational maps of degree d, we introduce a bifurcation measure defined by (ddcL(ƒλ))2d−2 add study its first properties. In particular, we show that the support of this measure is contained in the closure of the set of rational maps having 2d − 2 distinct Cremer-Cycles. This approach yields to a purely potential-theoretic proof of Mañé-Sad-Sullivan theorem and, moreover, allows us to extend it.

Received: 2006-01-27
Revised: 2006-04-19
Published Online: 2007-08-01
Published in Print: 2007-07-27

© Walter de Gruyter

Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/CRELLE.2007.058/html
Button zum nach oben scrollen