Startseite There are genus one curves of every index over every number field
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

There are genus one curves of every index over every number field

  • Pete L Clark EMAIL logo
Veröffentlicht/Copyright: 17. Mai 2006
Veröffentlichen auch Sie bei De Gruyter Brill
Journal für die reine und angewandte Mathematik
Aus der Zeitschrift Band 2006 Heft 594

Abstract

We show that there exist genus one curves of every index over the rational numbers, answering affirmatively a question of Lang and Tate. The proof is “elementary” in the sense that it does not assume the finiteness of any Shafarevich-Tate group. On the other hand, using Kolyvagin's construction of a rational elliptic curve whose Mordell-Weil and Shafarevich-Tate groups are both trivial, we show that there are infinitely many genus one curves of every index over every number field.

Received: 2004-11-18
Revised: 2005-05-13
Published Online: 2006-05-17
Published in Print: 2006-05-01

© Walter de Gruyter

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/CRELLE.2006.040/html
Button zum nach oben scrollen