Startseite Teitelbaum's exceptional zero conjecture in the function field case
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Teitelbaum's exceptional zero conjecture in the function field case

  • Hilmar Hauer EMAIL logo und Ignazio Longhi EMAIL logo
Veröffentlicht/Copyright: 8. Mai 2006
Veröffentlichen auch Sie bei De Gruyter Brill
Journal für die reine und angewandte Mathematik
Aus der Zeitschrift Band 2006 Heft 591

Abstract

The exceptional zero conjecture relates the first derivative of the p-adic L-function of a rational elliptic curve with split multiplicative reduction at p to its complex L-function. Teitelbaum formulated an analogue of Mazur and Tate's refined (multiplicative) version of this conjecture for elliptic curves over the rational function field 𝔽q(T) with split multiplicative reduction at two places 𝔭 and ∞, avoiding the construction of a 𝔭-adic L-function. This article proves Teitelbaum's conjecture up to roots of unity by developing Darmon's theory of double integrals over arbitrary function fields. A function field version of Darmon's period conjecture is also obtained.


117 John Archer Way, Wandsworth, London, SW18 2TQ, UK
2Dipartimento di Matematica “Federigo Enriques”, Milano, Italy

Received: 2005-01-13
Published Online: 2006-05-08
Published in Print: 2006-02-24

© Walter de Gruyter

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/CRELLE.2006.017/html
Button zum nach oben scrollen