Solution of Initial-Boundary Value Problems
-
Umurdin Dalabaev
Über dieses Buch
Methods for solving problems of mathematical physics can be divided into the following four classes.
Analytical methods (the method of separation of variables, the method of characteristics, the method of Green's functions, etc.) methods have a relatively low degree of universality, i.e. focused on solving rather narrow classes of problems.
Approximate analytical methods (projection, variational methods, small parameter method, operational methods, various iterative methods) are more versatile than analytical ones.
Numerical methods (finite difference method, direct method, control volume method, finite element method, etc.) are very universal methods.
Probabilistic methods (Monte Carlo methods) are highly versatile. Can be used to calculate discontinuous solutions. However, they require large amounts of calculations and, as a rule, they lose with the computational complexity of the above methods when solving such problems to which these methods are applicable.
Comparing methods for solving problems of mathematical physics, it is impossible to give unconditional primacy to any of them. Any of them may be the best for solving problems of a certain class.
The proposed method of moving nodes for boundary value problems of differential equations combines a combination of numerical and analytical methods. In this case, we can obtain, on the one hand, an approximately analytical solution of the problem, which is not related to the methods listed above. On the other hand, this method allows one to obtain compact discrete approximations of the original problem. Note that obtaining an approximately analytical solution of differential equations is based on numerical methods. The nature of numerical methods also allows obtaining an approximate analytical expression for solving differential equations
-
Provides the method of obtaining an approximate solution of boundary value problems in a simple way suitable for engineering calculations
-
Provides improved difference schemes
-
Provides the analyzis of the approximation error for difference equations
Information zu Autoren / Herausgebern
Dr. Dalabaev is a professor at the University of World Economy and Diplomacy, Department of Mathematic modelling & Information Systems, Tashkent, Uzbekistan. His research interests are in computational fluid dynamics, numerical methods, modelling two phase flow, particle motion in fluids, moving node method, approximate-analytical solution of a differential equation.
Fachgebiete
-
PDF downloadenÖffentlich zugänglich
Frontmatter
I -
PDF downloadenÖffentlich zugänglich
Contents
V -
Erfordert eine Authentifizierung Nicht lizenziertLizenziert
Introduction
1 -
Erfordert eine Authentifizierung Nicht lizenziertLizenziert
Chapter 1 Basics of numerical methods
3 -
Erfordert eine Authentifizierung Nicht lizenziertLizenziert
Chapter 2 The method of moving nodes for two-point boundary value problems
18 -
Erfordert eine Authentifizierung Nicht lizenziertLizenziert
Chapter 3 Solution of the Cauchy problem
55 -
Erfordert eine Authentifizierung Nicht lizenziertLizenziert
Chapter 4 Solution of initial-boundary value problems for a parabolic equation
65 -
Erfordert eine Authentifizierung Nicht lizenziertLizenziert
Chapter 5 Solving boundary value problems for elliptic equations
95 -
Erfordert eine Authentifizierung Nicht lizenziertLizenziert
Conclusions
122 -
Erfordert eine Authentifizierung Nicht lizenziertLizenziert
References
123 -
Erfordert eine Authentifizierung Nicht lizenziertLizenziert
Index
125
-
Herstellerinformationen:
Walter de Gruyter GmbH
Genthiner Straße 13
10785 Berlin
productsafety@degruyterbrill.com