Startseite Mathematik 1. Theory-grounded user modeling for personalized HCI
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

1. Theory-grounded user modeling for personalized HCI

  • Mark P. Graus und Bruce Ferwerda
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Personalized systems are systems that adapt themselves to meet the inferred needs of individual users. The majority of personalized systems mainly rely on data describing how users interacted with these systems. A common approach is to use historical data to predict users’ future needs, preferences, and behavior to subsequently adapt the system to these predictions. However, this adaptation is often done without leveraging the theoretical understanding between behavior and user traits that can be used to characterize individual users or the relationship between user traits and needs that can be used to adapt the system. Adopting a more theoretical perspective can benefit personalization in two ways: (i) letting systems rely on theory can reduce the need for extensive data-driven analysis, and (ii) interpreting the outcomes of datadriven analysis (such as predictive models) from a theoretical perspective can expand our knowledge about users. However, incorporating theoretical knowledge in personalization brings forth a number of challenges. In this chapter, we review literature that taps into aspects of (i) psychological models from traditional psychological theory that can be used in personalization, (ii) relationships between psychological models and online behavior, (iii) automated inference of psychological models from data, and (iv) how to incorporate psychological models in personalized systems. Finally, we propose a step-by-step approach on how to design personalized systems that take user traits into account.

Abstract

Personalized systems are systems that adapt themselves to meet the inferred needs of individual users. The majority of personalized systems mainly rely on data describing how users interacted with these systems. A common approach is to use historical data to predict users’ future needs, preferences, and behavior to subsequently adapt the system to these predictions. However, this adaptation is often done without leveraging the theoretical understanding between behavior and user traits that can be used to characterize individual users or the relationship between user traits and needs that can be used to adapt the system. Adopting a more theoretical perspective can benefit personalization in two ways: (i) letting systems rely on theory can reduce the need for extensive data-driven analysis, and (ii) interpreting the outcomes of datadriven analysis (such as predictive models) from a theoretical perspective can expand our knowledge about users. However, incorporating theoretical knowledge in personalization brings forth a number of challenges. In this chapter, we review literature that taps into aspects of (i) psychological models from traditional psychological theory that can be used in personalization, (ii) relationships between psychological models and online behavior, (iii) automated inference of psychological models from data, and (iv) how to incorporate psychological models in personalized systems. Finally, we propose a step-by-step approach on how to design personalized systems that take user traits into account.

Heruntergeladen am 7.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9783110552485-001/html
Button zum nach oben scrollen