Startseite Mathematik 6.7 Properties of the Stress Cutoff Functions
Kapitel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

6.7 Properties of the Stress Cutoff Functions

  • VladVE Vicol , Nader Masmoudi und Matthew Novack
Weitere Titel anzeigen von Princeton University Press
© 2023 Princeton University Press, Princeton

© 2023 Princeton University Press, Princeton

Kapitel in diesem Buch

  1. Frontmatter i
  2. Contents v
  3. 1. Introduction
  4. 1.1 Context and motivation 1
  5. 1.2 Ideas and difficulties 6
  6. 1.3 Organization of the book 8
  7. 1.4 Acknowledgments 9
  8. 2. Outline of the convex integration scheme
  9. 2.1 A Guide to the Parameters 11
  10. 2.2 Inductive Assumptions 14
  11. 2.3 Intermittent Pipe Flows 14
  12. 2.4 Higher Order Stresses 17
  13. 2.5 Cutoff Functions 22
  14. 2.6 The Perturbation 27
  15. 2.7 The Reynolds Stress Error and Heuristic Estimates 29
  16. 3. Inductive Assumptions
  17. 3.1 General Notations 37
  18. 3.2 Inductive Estimates 39
  19. 3.3 Main Inductive Proposition 44
  20. 3.4 Proof of Theorem 1.1 44
  21. 4. Building Blocks
  22. 4.1 A Careful Construction of Intermittent Pipe Flows 49
  23. 4.2 Deformed Pipe Flows and Curved Axes 57
  24. 4.3 Placements Via Relative Intermittency 59
  25. 5. Mollification 67
  26. 6. Cutoffs
  27. 6.1 Definition of the Velocity Cutoff Functions 83
  28. 6.2 Properties of the Velocity Cutoff Functions 87
  29. 6.3 Definition of the Temporal Cutoff Functions 115
  30. 6.4 Estimates on Flow Maps 117
  31. 6.5 Stress Estimates on the Support of the New Velocity Cutoff Functions 121
  32. 6.6 Definition of the Stress Cutoff Functions 123
  33. 6.7 Properties of the Stress Cutoff Functions 124
  34. 6.8 Definition and Properties of the Checkerboard Cutoff Functions 131
  35. 6.9 Definition of the Cumulative Cutoff Function 133
  36. 7. From q to q + 1: Breaking Down the Main Inductive Estimates
  37. 7.1 Induction on Q 135
  38. 7.2 Notations 136
  39. 7.3 Induction on ñ 138
  40. 8. Proving the Main Inductive Estimates
  41. 8. 1 Definition of R̊q, n̄, p̄ and Wq+1, n̄, p̄ 143
  42. 8. 2 Estimates For Wq+1, n̄, p̄ 147
  43. 8.3 Identification of Error Terms 152
  44. 8.4 Transport Errors 168
  45. 8.5 Nash Errors 171
  46. 8.6 Type 1 Oscillation Errors 172
  47. 8.7 Type 2 Oscillation Errors 180
  48. 8.8 Divergence Corrector Errors 189
  49. 8.9 Time Support of Perturbations and Stresses 191
  50. 9. Parameters
  51. 9.1 Definitions and Hierarchy of the Parameters 193
  52. 9.2 Definitions of the Q-Dependent Parameters 196
  53. 9.3 Inequalities and Consequences of the Parameter Definitions 198
  54. 9.4 Mollifiers and Fourier Projectors 203
  55. 9.5 Notations 204
  56. Appendix A: Useful Lemmas
  57. Introduction 205
  58. A.1 Transport Estimates 206
  59. A.2 Proof of Lemma 6.2 206
  60. A.3 Lp Decorrelation 209
  61. A.4 Sobolev Inequality with Cutoffs 209
  62. A.5 Consequences of the Faà di Bruno Formula 211
  63. A.6 Bounds for Sums and Iterates of Operators 217
  64. A.7 Commutators with Material Derivatives 221
  65. A.8 Intermittency-Friendly Inversion of the Divergence 226
  66. Bibliography 239
  67. Index 245
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/9780691249568-026/html
Button zum nach oben scrollen