Multi-level Reactor Optimisation in the Conceptual Design of Processes with Heterogeneous Catalytic Reactors
-
Daniel Montolio-Rodriguez
, Patrick Linke und David Linke
The paper proposes a multi-level approach for process synthesis using process superstructure optimisation. More specifically, we address the introduction of detailed reactor models to explore the effects of non-ideal reactor behaviour during the process synthesis activity after the initial screening of design candidates has been completed using ideal reactor models and high-level design trends extracted to narrow the design space to a few promising process structures. The approach focuses on heterogeneously catalysed gas-phase reaction systems due to their prominence in industrial practice and is illustrated with examples in styrene and acetic acid production.
©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Artikel in diesem Heft
- Article
- Optimization of Pumping Schedules Using the Genealogical Decision Tree Approach
- Response Surface Modeling and Optimization of Immobilized Candida antarctica Lipase-Catalyzed Production of Dicarboxylic Acid Ester
- Search for Optimum Operating Conditions for a Water Purification Process Integrated to a Heat Transformer with Energy Recycling using Artificial Neural Network Inverse Solved by Genetic and Particle Swarm Algorithms
- Generic Mathematical Model for PSA Process
- A Combined Computational Fluid Dynamics and Artificial Neural Networks Model for Distillation Point Efficiency
- Multi-level Reactor Optimisation in the Conceptual Design of Processes with Heterogeneous Catalytic Reactors
- ANN and ANFIS Models for COP Prediction of a Water Purification Process Integrated to a Heat Transformer with Energy Recycling
- Adsorption of Cadmium on Gel Combustion Derived Nano ZnO
- Smith Predictor Based Parallel Cascade Control Strategy for Unstable Processes with Application to a Continuous Bioreactor
- Application of box-behnken design to the extraction of flavonoid fraction of Schizophyllum commune and the empirical kinetic study
- Sewage Sludge to Energy - A Simulation Study
- A Modified Kennard-Stone Algorithm for Optimal Division of Data for Developing Artificial Neural Network Models
- Particle swarm optimization technique for the optimal design of shell and tube heat exchangers
- Neural Network Based Multi Stage Modelling of Chylla Haase Polymerization Reactor
Artikel in diesem Heft
- Article
- Optimization of Pumping Schedules Using the Genealogical Decision Tree Approach
- Response Surface Modeling and Optimization of Immobilized Candida antarctica Lipase-Catalyzed Production of Dicarboxylic Acid Ester
- Search for Optimum Operating Conditions for a Water Purification Process Integrated to a Heat Transformer with Energy Recycling using Artificial Neural Network Inverse Solved by Genetic and Particle Swarm Algorithms
- Generic Mathematical Model for PSA Process
- A Combined Computational Fluid Dynamics and Artificial Neural Networks Model for Distillation Point Efficiency
- Multi-level Reactor Optimisation in the Conceptual Design of Processes with Heterogeneous Catalytic Reactors
- ANN and ANFIS Models for COP Prediction of a Water Purification Process Integrated to a Heat Transformer with Energy Recycling
- Adsorption of Cadmium on Gel Combustion Derived Nano ZnO
- Smith Predictor Based Parallel Cascade Control Strategy for Unstable Processes with Application to a Continuous Bioreactor
- Application of box-behnken design to the extraction of flavonoid fraction of Schizophyllum commune and the empirical kinetic study
- Sewage Sludge to Energy - A Simulation Study
- A Modified Kennard-Stone Algorithm for Optimal Division of Data for Developing Artificial Neural Network Models
- Particle swarm optimization technique for the optimal design of shell and tube heat exchangers
- Neural Network Based Multi Stage Modelling of Chylla Haase Polymerization Reactor