Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Determination of the memory kernel from boundary measurements on a finite time interval
-
G. V. Dyatlov
Veröffentlicht/Copyright:
2003
We study the problem of finding the memory term of a hyperbolic equation from the Dirichlet-to-Neumann map given on a finite time interval. We prove that this map determines uniquely some characteristics of the memory function and thereby memory functions of a special form.
Published Online: --
Published in Print: 2003-03-01
Copyright 2003, Walter de Gruyter
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Inverse problems and classes of solutions of evolution equations
- Planar crack identification for the transient heat equation
- Parameter identification for Laplace equation and approximation in Hardy classes
- Determination of the memory kernel from boundary measurements on a finite time interval
- Parabolic integro-differential identification problems related to memory kernels with special symmetries
- Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation
Artikel in diesem Heft
- Inverse problems and classes of solutions of evolution equations
- Planar crack identification for the transient heat equation
- Parameter identification for Laplace equation and approximation in Hardy classes
- Determination of the memory kernel from boundary measurements on a finite time interval
- Parabolic integro-differential identification problems related to memory kernels with special symmetries
- Iteration methods for solving a two dimensional inverse problem for a hyperbolic equation