Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric l1
-
V. A. Emelichev
und K. G. Kuzmin
Veröffentlicht/Copyright:
1. Oktober 2004
We consider a vector (multicriteria) problem of Boolean programming where sub-criteria are projections of linear functions onto R+. We give a bound for variation of coefficients of such functions in the metric l1 which preserves strict efficiency of the solution.
Published Online: 2004-10-01
Published in Print: 2004-10-01
Copyright 2004, Walter de Gruyter
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Iteration-free decomposition of strongly dependent functions
- The shortest vectors of lattices connected with a linear congruent generator
- On the number of solutions of the equation (x1 + . . . + xn)m = ax1 . . . xn in a finite field
- On average and typical values of sums of pairwise distances for subsets of vertices of the n-dimensional unit cube
- Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric l1
- A family of multivariate χ2-statistics
- A representation of parastrophs of loops and quasigroups
Artikel in diesem Heft
- Iteration-free decomposition of strongly dependent functions
- The shortest vectors of lattices connected with a linear congruent generator
- On the number of solutions of the equation (x1 + . . . + xn)m = ax1 . . . xn in a finite field
- On average and typical values of sums of pairwise distances for subsets of vertices of the n-dimensional unit cube
- Stability analysis of a strictly efficient solution of a vector problem of Boolean programming in the metric l1
- A family of multivariate χ2-statistics
- A representation of parastrophs of loops and quasigroups