Autonomous ferries offer a promising solution to challenges in public waterway transport, such as crew shortage and environmental impact. Safe navigation requires reliable sensor performance, particularly in adverse maritime conditions like fog, rain, and low visibility. This paper evaluates LiDAR, mmWave radar, and infrared/RGB cameras under real-world conditions aboard a medium-sized autonomous ferry prototype. A virtual test field in Unreal Engine 5 was used to assess sensor configurations and field trials validated performance in varying weather conditions. Results show LiDAR’s range and density loss in fog and rain, the robustness of mmWave radar for long-range detection, and the benefit of pairing it with PTZ-mounted infrared cameras for improved tracking in low-visibility scenarios. We propose an optimized multi-sensor configuration combining these technologies to maximize perception accuracy. By linking simulation and experimental findings, this study provides actionable recommendations for weather-resilient perception systems and informs sensor fusion strategies for small to medium-sized autonomous vessels.
Heft
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Ahead-of-Publication / Just-Accepted
Inhalt
-
26. September 2025
-
Erfordert eine Authentifizierung Nicht lizenziertQuantitative study of pipe stripe defects using rotating magnetic field MFLLizenziert24. September 2025
-
Erfordert eine Authentifizierung Nicht lizenziertEine mathematische Beschreibung der Flankengeometrie geradverzahnter KronenräderLizenziert19. August 2025
-
Erfordert eine Authentifizierung Nicht lizenziertExpected value of the root mean square of sinefitting residuals in the presence of phase noise or sampling jitterLizenziert8. Juli 2025
-
Erfordert eine Authentifizierung Nicht lizenziertProgress and applications of wearable technology in aquatic sports: a reviewLizenziert4. Juli 2025
-
4. Juli 2025
-
8. April 2025