For many decades, statisticians have made attempts to prepare the Bayesian omelette without breaking the Bayesian eggs; that is, to obtain probabilistic likelihood-based inferences without relying on informative prior distributions. A recent example is Murray Aitkin´s recent book, Statistical Inference , which presents an approach to statistical hypothesis testing based on comparisons of posterior distributions of likelihoods under competing models. Aitkin develops and illustrates his method using some simple examples of inference from iid data and two-way tests of independence. We analyze in this note some consequences of the inferential paradigm adopted therein, discussing why the approach is incompatible with a Bayesian perspective and why we do not find it relevant for applied work.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertInherent difficulties of non-Bayesian likelihood-based inference, as revealed by an examination of a recent book by AitkinLizenziert27. Juni 2013
-
Erfordert eine Authentifizierung Nicht lizenziertComments on the review of Statistical InferenceLizenziert27. Juni 2013
-
Erfordert eine Authentifizierung Nicht lizenziertLoss-based risk measuresLizenziert27. Juni 2013
-
Erfordert eine Authentifizierung Nicht lizenziertA harmonic function approach to Nash-equilibria of Kifer-type stopping gamesLizenziert27. Juni 2013
-
Erfordert eine Authentifizierung Nicht lizenziertA note on the biasedness and unbiasedness of two-sample Kolmogorov–Smirnov testLizenziert27. Juni 2013