In this paper we consider the problem of finding optimal consumption strategies in an incomplete semimartingale market model under model uncertainty. The quality of a consumption strategy is measured by not only one probability measure but as common in risk theory by a class of scenario measures. We formulate a dual version of the optimization problem and prove the existence of a saddle point and give a characterization of an optimal consumption strategy in terms of solutions of the dual problem. This generalizes results of Karatzas and Zitkovic (2003) for the optimal consumption problem under a fixed probability measure.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertOptimal consumption strategies under model uncertaintyLizenziert25. September 2009
-
Erfordert eine Authentifizierung Nicht lizenziertPerpetual convertible bonds in jump-diffusion modelsLizenziert25. September 2009
-
Erfordert eine Authentifizierung Nicht lizenziertOn low dimensional case in the fundamental asset pricing theorem with transaction costsLizenziert25. September 2009
-
Erfordert eine Authentifizierung Nicht lizenziertOptimal portfolios with expected loss constraints and shortfall risk optimal martingale measuresLizenziert25. September 2009
-
Erfordert eine Authentifizierung Nicht lizenziertApproximations of empirical probability generating processesLizenziert25. September 2009