Political science data often contain grouped observations, which produces unobserved "cluster effects" in statistical models. Typical solutions include (1) ignoring the impact on coefficients and only adjusting the standard errors of generalized linear models (GLM) or (2) addressing clustering in coefficient estimation while relying on a parametric assumption for the cluster effects and/or a large number of clusters for standard errors. I show that both approaches are problematic for inference. Through simulation I demonstrate that multilevel modeling (MLM) and generalized estimating equations (GEE) produce more efficient coefficients than does GLM. Next, I show that commonly-used MLM and GEE standard error methods can be biased downward, while bootstrapping by resampling clusters (BCSE) performs better, even with a misspecified error distribution and/or few clusters. I recommend the use of MLM or GEE to estimate coefficients and BCSE to estimate uncertainty, and show that this approach can produce divergent conclusions in applied research.
Inhalt
- Article
-
Erfordert eine Authentifizierung Nicht lizenziertImproving Statistical Inference with Clustered DataLizenziert4. Januar 2012
-
Erfordert eine Authentifizierung Nicht lizenziertMajor Contributions to Quantitative Economics Sponsored by the Defense CommunityLizenziert13. Januar 2012
-
Erfordert eine Authentifizierung Nicht lizenziertProblems with Tests of the Missingness Mechanism in Quantitative Policy StudiesLizenziert26. März 2012
-
Erfordert eine Authentifizierung Nicht lizenziertClimate Statistics and Public PolicyLizenziert29. März 2012
- Commentary and Ideas
-
Erfordert eine Authentifizierung Nicht lizenziertData, Statistics, and Controversy: Making Science Research Data IntelligibleLizenziert18. Januar 2012
- Response or Comment
-
Erfordert eine Authentifizierung Nicht lizenziertWhy and When "Flawed" Social Network Analyses Still Yield Valid Tests of no ContagionLizenziert4. Februar 2012
-
Erfordert eine Authentifizierung Nicht lizenziertComment on "Why and When 'Flawed' Social Network Analyses Still Yield Valid Tests of no Contagion"Lizenziert13. Februar 2012