Let H be an infinite-dimensional real separable Hilbert space. Given an unknown mapping M:H (r)H that can only be observed with noise, we consider two modified Robbins-Monro procedures to estimate the zero point ?o ( H of M. These procedures work in appropriate finite dimensional sub-spaces of growing dimension. Almost-sure convergence, functional central limit theorem (hence asymptotic normality), law of iterated logarithm (hence almost-sure loglog rate of convergence), and mean rate of convergence are obtained for Hilbert space-valued mixingale, (-dependent error processes.
Inhalt
- Article
-
Erfordert eine Authentifizierung Nicht lizenziertAsymptotic Properties of Some Projection-based Robbins-Monro Procedures in a Hilbert SpaceLizenziert1. April 2002
-
Erfordert eine Authentifizierung Nicht lizenziertStock Market, Interest Rate and Output: A Model and Estimation for US Time Series DataLizenziert1. April 2002
-
Erfordert eine Authentifizierung Nicht lizenziertCharacterizing the Degree of Stability of Non-linear Dynamic ModelsLizenziert1. April 2002
-
Erfordert eine Authentifizierung Nicht lizenziertNonlinear Trends and Co-trending in Canadian Money DemandLizenziert1. April 2002