In this paper, we develop a new class of parametric nonlinear time series models by combining two important classes of models, namely smooth transition models and hidden Markov regime-switching models. The class of models is general and flexible enough to incorporate two types of switching behavior: smooth state transitions and abrupt changes in hidden states. The estimation of the hidden states and model parameters is performed by applying filtering theory and a filter-based expectation-maximization (EM) algorithm. Applications of the model are illustrated using simulated data and real financial data. Other potential applications are mentioned.
Inhalt
- Research Articles
-
Öffentlich zugänglichA hidden Markov regime-switching smooth transition model29. Juni 2018
-
Erfordert eine Authentifizierung Nicht lizenziertThe Rescaled VAR Model with an Application to Mixed-Frequency Macroeconomic ForecastingLizenziert30. April 2018
-
Erfordert eine Authentifizierung Nicht lizenziertA New Method for Specifying the Tuning Parameter of ℓ1 Trend FilteringLizenziert1. Mai 2018
-
Erfordert eine Authentifizierung Nicht lizenziertBayesian Subset Selection for Two-Threshold Variable Autoregressive ModelsLizenziert30. April 2018
-
Erfordert eine Authentifizierung Nicht lizenziertMarket concentration and market power of the Swedish mortgage Sector – a wavelet panel efficiency analysisLizenziert3. April 2018