The instability in the selection of models is a major concern with data sets containing a large number of covariates. We focus on stability selection which is used as a technique to improve variable selection performance for a range of selection methods, based on aggregating the results of applying a selection procedure to sub-samples of the data where the observations are subject to right censoring. The accelerated failure time (AFT) models have proved useful in many contexts including the heavy censoring (as for example in cancer survival) and the high dimensionality (as for example in micro-array data). We implement the stability selection approach using three variable selection techniques—Lasso, ridge regression, and elastic net applied to censored data using AFT models. We compare the performances of these regularized techniques with and without stability selection approaches with simulation studies and two real data examples–a breast cancer data and a diffuse large B-cell lymphoma data. The results suggest that stability selection gives always stable scenario about the selection of variables and that as the dimension of data increases the performance of methods with stability selection also improves compared to methods without stability selection irrespective of the collinearity between the covariates.
Inhalt
- Research Articles
-
Erfordert eine Authentifizierung Nicht lizenziertStability selection for lasso, ridge and elastic net implemented with AFT modelsLizenziert7. Oktober 2019
-
Erfordert eine Authentifizierung Nicht lizenziertA novel individualized drug repositioning approach for predicting personalized candidate drugs for type 1 diabetes mellitusLizenziert9. Juli 2019
-
Erfordert eine Authentifizierung Nicht lizenziertClustering methods for single-cell RNA-sequencing expression data: performance evaluation with varying sample sizes and cell compositionsLizenziert14. August 2019
-
Erfordert eine Authentifizierung Nicht lizenziertBi-level feature selection in high dimensional AFT models with applications to a genomic studyLizenziert17. September 2019