A detailed theoretical research on a novel integrated optics with surface plasmon resonance (SPR)-based waveguide is presented. An SPR multilayer section is designed by introducing intermediate layers to support fundamental mode and stronger electromagnetic field. Most current techniques excited with a single optical mode are “blind” to the conformational change of bound molecules. The greatest strength of such technique lies in monitoring protein conformational change. The Mach-Zehnder interferometry architecture is adopted to maximize sensor sensitivity and prevent unspecific binding from biological material and error from geometrical difference. A proof-of-concept is conducted on the integrated optics by detecting protein transglutaminase (tTG) specifically binding calcium ion (Ca 2+ ) via the finite-element method. The minimum decrease of biolayer thickness ( δ a =0.5 nm) caused by tTG-Ca 2+ interaction is much smaller than a single protein molecule (normally 1–100 nm). Associated with biolayer thickness and density, a thin dense layer is formed as Ca 2+ binds to the tTG protein. Thus, the tTG protein undergoing conformational change on binding Ca 2+ is traced and verified as molecular interaction occurs.
Es konnten keine Quellenangaben für dieses Dokument abgerufen werden
A drug delivery system based on carboxymethyl cellulose-grafted graphene oxide loaded by methotrexate (MTX/CMC-GO) with pH-sensitive and controlled drug-release properties was developed in this work. CMC was grafted on graphene oxide by ethylenediamine through hydrothermal treatment. CMC serves as a pH-sensitive trigger, while CMC-GO serves as a drug-carrying vehicle due to the curved layer and large plain surface. Different amounts of drugs could be loaded into CMC-GO nanocarriers by control of the original amount of drug/carrier ratios. Additionally, low cytotoxicity against NIH-3T3 cells and low in vivo toxicity was observed. In vivo tumor growth inhibition assays showed that MTX/CMC-GO demonstrated superior antitumor activity than free MTX against HT-29 cells. Moreover, prolonged survival time of mice was observed after MTX/CMC-GO administration. The MTX/CMC-GO drug delivery system has a great potential in colon cancer therapy.
Reviews
Es konnten keine Quellenangaben für dieses Dokument abgerufen werden
Crop losses mainly occur due to biotic factors, which include soil-borne phytopathogens, insect pests, parasites, and predators. The major loss of food in the food industry is due to its spoilage by various microorganisms. With advancement in nanotechnology, the use of nanoparticles in food and agriculture crop yield can be improved. In this context, copper nanoparticles (CuNPs) have attracted a great deal of attention from all over the world due to their broad-spectrum antimicrobial activity. Copper is one of the key micronutrients, which plays an important role in growth and development of plants. CuNP-based fertilizer and herbicide can be used in agriculture. The small size of CuNPs facilitates their easy absorption by the plants. CuNPs can be promisingly used in the food packaging to avoid the growth of food spoilage microorganisms. The use of CuNP-based agar packaging materials has substantial potential to increase the shelf-life of food. The present review focuses on the application of Cu and CuNPs in food and agriculture. Moreover, antimicrobial and pesticidal properties of CuNPs are also discussed.
Es konnten keine Quellenangaben für dieses Dokument abgerufen werden
Cancer continues to be ranked among the top causes of mortality in the world despite the advances made in science and technology. The sub-par performance of cancer therapeutic strategies is due to the transformation of the cancer from a proliferating mass of cells into an impregnable fortress that manipulates and controls the microenvironment to prevent access to any potential cytotoxic factor as well as circumvent the innate immune surveillance processes. Recruitment of the native immune cells to selectively recognize and kill cancer cells can serve to augment the cytotoxic effects of conventional cancer therapeutic approaches. In addition to annihilation of the cancer cells, the induction of memory in the immune cells prevents the possibility of cancer recurrence. However, despite the apparent benefits of cancer immunotherapy, there are several pitfalls that need to be addressed in order to extend these benefits to the clinic. In this context, engineered nanostructured carrier systems can be effectively employed for an activation and priming of the host immune system selectively against the target cancer cells. This has led to the emergence of “nanoimmunotherapy” as an important therapeutic approach against cancer. The use of multi-functional nanomaterials in combination with immunotherapy offers possible solutions to overcome the current limitations in cancer therapy and represents the next generation of “smart therapeutics,” which forms the prime focus of discussion in this review.
Es konnten keine Quellenangaben für dieses Dokument abgerufen werden
Nanotechnology has brought about revolutionary innovations in many aspects of the oil and gas industry. Nanotechnology generates nanomaterials, which are natural or synthetic materials with at least one dimension at the nanoscale (1–100 nm). Among them, nanoparticles (NPs), in particular, have large surface areas and high volume concentrations. Given these dimensional effects, nanomaterials acquire unique mechanical, chemical, thermal, and magnetic properties and, therefore, have a superior performance than conventional micro and macro materials in a range of oil and gas field applications. Nanomaterials can also be custom functionalized by chemical modifications to meet specific technical requirements. In this review, the developments in the recent years concerning the research on nanotechnology in drilling, completion, reservoir protection, enhance-oil-recovery (EOR), sensing and imaging techniques, stimulation techniques in oil and gas migration and accumulation have been summarized. The aim of this paper was to provide a comprehensive overview of the scientific progress of nanotechnology in the oil and gas research areas, identifying the existing barriers and challenges, and evaluating the technical and economic prospects in this field.