A nonoverlapping domain decomposition approach with uniform and matching grids is used to define and compute the orthogonal spline collocation solution of the Dirichlet boundary value problem for Poisson's equation on a square partitioned into four squares. The collocation solution on four interfaces is computed using the preconditioned conjugate gradient method with the preconditioner defined in terms of interface preconditioners for the adjacent squares. The collocation solution on four squares is computed by a matrix decomposition method that uses fast Fourier transforms. With the number of preconditioned conjugate gradient iterations proportional to log 2 N , the total cost of the algorithm is O ( N 2 log 2 N ), where the number of unknowns in the collocation solution is O ( N 2 ). The approach presented in this paper, along with that in [B.Bialecki and M.Dryja, A nonoverlapping domain decomposition method for orthogonal spline collocation problems. SIAM J. Numer. Anal. (2003) 41 , 1709 – 1728.], generalizes to variable coefficient equations on rectangular polygons partitioned into many subrectangles and is well suited for parallel computation.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertNonoverlapping domain decomposition with cross points for orthogonal spline collocationLizenziert25. Juni 2008
-
Erfordert eine Authentifizierung Nicht lizenziertModeling and computation of the shape of a compressed axisymmetric gas bubbleLizenziert25. Juni 2008
-
Erfordert eine Authentifizierung Nicht lizenziertNumerical method for elliptic multiscale problemsLizenziert25. Juni 2008
-
Erfordert eine Authentifizierung Nicht lizenziertSimultaneous pseudo-time stepping for 3D aerodynamic shape optimizationLizenziert25. Juni 2008