A local a priori and a posteriori analysis is developed for the Galerkin method with discontinuous finite elements for solving stationary diffusion problems. The main results are an optimalorder estimate for the point-wise error and a corresponding a posteriori error bound. The proofs are based on weighted L 2 -norm error estimates for discrete Green functions as already known for the ‘continuous’ finite element method.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertLocal error analysis of the interior penalty discontinuous Galerkin method for second order elliptic problemsLizenziert15. November 2010
-
Erfordert eine Authentifizierung Nicht lizenziertA second-order scheme for singularly perturbed differential equations with discontinuous source termLizenziert15. November 2010
-
Erfordert eine Authentifizierung Nicht lizenziertSolving 0 = F(t, y(t), y′(t)) in MatlabLizenziert15. November 2010