We consider numerical methods for solving inverse problems for time fractional diffusion equation (TFDE) with the variable generalized diffusion coefficient q ( x ). Inverse problems are to find q ( x ) and the order α of the time derivative according to an additional information about a solution of TFDE. The weighted difference scheme is constructed via integro-interpolation method and the generalized factorization method is developed; results of stability analysis of the difference scheme are presented and properties of numerical solutions of forward problems are investigated. Inverse problems for TFDE with the variable coefficient are formulated as residual function minimization problems and properties of corresponding residual functions are discussed. The Levenberg–Marquardt algorithm for residual function minimization is used and numerical results are presented.
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertNumerical methods for solving inverse problems for time fractional diffusion equation with variable coefficientLizenziert6. Juli 2009
-
Erfordert eine Authentifizierung Nicht lizenziertOn inverse scattering at high energies for the multidimensional nonrelativistic Newton equation in electromagnetic fieldLizenziert6. Juli 2009
-
Erfordert eine Authentifizierung Nicht lizenziertRepresentation formulae for solutions to direct and inverse degenerate in time first-order Cauchy problems in Banach spacesLizenziert6. Juli 2009
-
Erfordert eine Authentifizierung Nicht lizenziertRecover implied volatility of underlying asset from European option priceLizenziert6. Juli 2009
-
Erfordert eine Authentifizierung Nicht lizenziertModeling and optimization of a propeller by means of inverse problemsLizenziert6. Juli 2009