In this paper we study the normal bundle of the embedding of subvarieties of dimension n – 1 in the Grassmann variety of lines in . Making use of some results on the geometry of the focal loci of congruences ([Arrondo, Bertolini and Turrini, Asian J. of Math. 5: 535–560, 2001] and [Arrondo, Bertolini and Turrini, Asian J. of Math. 9: 449–472, 2005]), we give some criteria to decide whether the normal bundle of a congruence is ample or not. Finally we apply these criteria to the line congruences of small degree in .
Inhalt
-
Erfordert eine Authentifizierung Nicht lizenziertOn the ampleness of the normal bundle of line congruencesLizenziert2. April 2011
-
Erfordert eine Authentifizierung Nicht lizenziertTopological types of 3-dimensional small coversLizenziert2. April 2011
-
Erfordert eine Authentifizierung Nicht lizenziertNull controllability with constraints on the state for nonlinear heat equationsLizenziert2. April 2011
-
Erfordert eine Authentifizierung Nicht lizenziertExponential closing property and approximation of Lyapunov exponents of linear cocyclesLizenziert2. April 2011
-
Erfordert eine Authentifizierung Nicht lizenziertReflection systems and partial root systemsLizenziert2. April 2011
-
Erfordert eine Authentifizierung Nicht lizenziertTodd's maximum-volume ellipsoid problem on symmetric conesLizenziert2. April 2011
-
Erfordert eine Authentifizierung Nicht lizenziertRefinement of the spectral asymptotics of generalized Krein Feller operatorsLizenziert2. April 2011