The author set up a simplistic agent-based model where agents learn with reinforcement observing an incomplete set of variables. The model is employed to generate an artificial dataset that is used to estimate standard macro econometric models. The author shows that the results are qualitatively indistinguishable (in terms of the signs and significances of the coefficients and impulse-responses) from the results obtained with a dataset that emerges in a genuinely rational system.
Inhalt
- Regular
-
5. Februar 2020
-
12. Februar 2020
-
Open AccessInference in economic experiments18. Februar 2020
-
Open AccessJob duration and inequality26. Februar 2020
-
Open AccessThe e-monetary theory7. Mai 2020
-
18. Juni 2020
-
3. Juli 2020
- Agent-based modelling and complexity economics
-
26. März 2020
- Bio-psycho-social foundations of macroeconomics
-
27. Januar 2020
-
4. Juni 2020
- Recent Developments in Applied Economics
-
7. Februar 2020
- Recent developments in international economics
-
Open AccessRe-examining inequality persistence20. Januar 2020
-
Open AccessExchange rate volatility in the eurozone11. Februar 2020
-
Open AccessEuropean Union: Collective bargaining and internal flexibility during the Great Recession21. Februar 2020
-
Open AccessA new and benign hegemon on the horizon? The Chinese century and growth in the Global South28. April 2020
-
Open AccessGlobal sourcing, firm size and export survival15. Juni 2020
-
30. Juni 2020
-
Open AccessOffshoring, job satisfaction and job insecurity2. Juli 2020
-
21. Juli 2020
- Replication Study