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1 Introduction

A central empirical finding from the use of dynamic factor models (DFMs) in applied macroeco-
nomics is that a few factors can explain a large fraction of the total variance of many macroeconomic
series. The factor structure is typically used for signal extraction and forecasting, although in some
cases maximum likelihood-based methods can be used to test hypotheses of economic interest.
Extensive surveys of the DFM literature can be found in Bai and Ng (2008), Stock and Watson
(2011) and Stock and Watson (2016).

Maximum likelihood estimation for DFMs with a high-dimensional panel of time series
becomes rapidly infeasible given the large number of parameters. However, in Doz et al. (2011)
a solution was put forward to overcome this problem via a two-step hybrid approach that links
the simplicity and speed of principal components to the efficiency of the Kalman smoother; later,
Doz et al. (2012) refined this technique by considering quasi-maximum likelihood estimation
where factor estimates are computed iteratively using the Kalman smoother on the state-space
representation via the EM algorithm.

Both approaches are robust to cross-sectional misspecification, time-series correlation of the
idiosyncratic components, and non-Gaussianity. Since then, state-space based maximum likelihood
methods have been increasingly adopted in the applied literature, e.g. Luciani (2015) and Scotti
(2016), among others. The asymptotic properties of EM estimation of these models were recently
investigated in Barigozzi and Luciani (2019a, 2019b) who also provide simulation-based evidence.

In this paper, we replicate and extend the Monte Carlo experiment presented in Doz et al. (2012)
on the suitability of ML for extracting dynamic factors from large datasets, by using different
software, a larger number of replications and a wider set of scenarios. We find that most of the
statements in the original article are supported, but the relative quality of full ML estimation,
compared to the alternative procedures proposed in the same paper, could be substantial in some
cases, whereas in other settings it may not be so decisive to outweigh the extra computational cost.

For our replication exercise, we used the DFM package for gretl (see Lucchetti and Venetis
(2019)), which implements three estimators for DFMs, namely the benchmark principal compo-
nents estimator (PC ), the two-step Kalman smoother based estimator (TS ) put forward by Doz
et al. (2011) and the quasi-maximum likelihood EM based estimator (ML ) by Doz et al. (2012).

The paper is organised as follows: section 2 describes the data generating process, section
3 offers a narrow sense replication of the Monte Carlo study in Doz et al. (2012) and section 4
extends (wide sense replication) the experiment, in a direction which should address common
concerns of practitioners. Section 5 briefly concludes the paper by summarising our findings.

2 Setup of the experiment

The models that we consider can be written in state-space representation as

xt
N×1

= Λ0 ft +Λ1 ft−1 + · · ·+Λs ft−s + et = χt + et (1)

ft
q×1

= A1 ft−1 +A2 ft−2 + · · ·+Ap ft−p +ut (2)
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where xt is a vector of N standardised observable variables1 and ft is the q-element vector of
(unobserved) common dynamic factor; the term χt is the so-called “common component” and the
shocks to the observation Equation (1), et , are known as the idiosyncratic component, and are
assumed to be uncorrelated with ft at all leads and lags. It is assumed that the elements of et are
weakly correlated both cross-sectionally and serially, so that the factors ft summarise the most
relevant cross-covariance properties of the variables. Both processes ft and et are assumed to be
second-order stationary.

As for s, the lag order in the observation Equation (1), the original study we are replicating
only considers a static version of the observation Equation (1) (that is, s = 0). Part of the added
value of the present study is to remove this limitation in favour of the fully generalised version
with s≥ 0.

The lag order s in Equation (1) is assumed to be finite here. A sizeable body of literature
(mainly by Forni, Hallin, Lippi and several co-authors) has analysed the so-called generalised
DFM, in which this assumption is relaxed, and estimation is typically carried out via spectral
methods. See Forni et al. (2000, 2015, 2017).

Although most of the literature on DFMs (including the article we are replicating) pays little
attention to the issue of identification of the model above, it should be mentioned that the reduced
form of Equations (1)–(2) is a VARMA process, for which notoriously many observationally-
equivalent representations exist. A comprehensive analysis of the identification problem in the
context of DFMs, with different approaches to its solution, is given in Bai and Wang (2015).
However, while the existence of several observationally-equivalent parametrisations for the same
DGP are a serious problem for parameter estimation, forecasting is not affected by the existence
of several observationally equivalent parametrisations (see for example Lütkepohl (2006), page
290). Since our focus is on the recovery of the space spanned by the dynamic factors ft , the
under-identification problem is not an issue.

In accordance with Doz et al. (2012), we consider the following data generating process in our
Monte Carlo study: the idiosyncratic shocks were generated as

et = Det−1 + vt , vt ∼ N.i.d (0N ,T ) (3)

where D is a diagonal matrix.2 We call di its i-th diagonal entry. As for the matrix T ,

Ti, j = τ
|i− j| (1−did j)

√
γiγ j (4)

γi =
βi

1−βi
Var (χi,t) (5)

where χi,t = λ ′0,i ft + ...+ λ ′s,i ft−s denotes the ith common component. The Toeplitz matrix T

is the covariance matrix of the vector vt , so the parameter τ controls for the amount of cross-

correlation in the idiosyncratic errors, Corr (ei,t ,e j,t) = τ |i− j|. The parameter βi =
Var(ei,t)

Var(xi,t)

1 This hypothesis is of course not restrictive, since a constant term could be added to Equation (1), and standardisation
is only necessary if the variables are expressed in different units.
2 This choice was made for conformity to the original article. In principle, since the EM-ML estimator we are discussing
here can be seen as a QMLE estimator, one could make different distributional assumptions, especially allowing for
leptokurtic innovations. Tables A7 and A8 in the online appendix contain results of our experiment with idiosyncratic
component errors drawn independently from the t4 distribution. We found no substantial changes.
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denotes noise variance proportion for the i−th variable and is drawn from the uniform distribution
βi ∼ i.i.d. U ([u,1−u]). When u = 0.5, “observables” xi,t have cross-sectionally homoskedastic
idiosyncratic components. The exact factor model corresponds to the case τ = 0 and D = 0. The
elements of the loadings matrices Λi were drawn from a standard Normal distribution.3 The
above data generating process is considerably broader than the one adopted by Doz et al. (2012),
which can be derived as a special case of Equations (1)-(5). Similar experiments have also been
performed by Breitung and Tenhofen (2011) and Bai and Li (2016).4

The aim of the experiment is to carry out a comparison between estimators on their ability
to reconstruct the latent factors. As is well known, estimated factors (and factor loadings) are
rotations of the underlying latent factors (and underlying latent loadings respectively), so the
comparison will be based on a statistic that measures the closeness of the space spanned by the
“true” simulated factors ft and their estimators f̂t . The three estimators considered are principal
components (PC), the two-step estimator (TS) and the maximum likelihood estimator (ML). In the
latter two cases, by the term “estimator”, we refer to the smoothed estimates of the state vector ft
in (2)).

If we denote by F and F̂ the matrices holding ft and f̂t , respectively, the statistic we use is the
trace R2, that can be written as,5

T R =
tr
[
F′F̂
(
F̂′F̂
)−1 F̂′F

]
tr (F′F)

(6)

The notation F and F̂ is not to be mistaken for the static factors matrix. For s = 0, matrix F holds
simulated ft while F̂ holds either the r = q static factors f̂t,PC estimated by PC or the q dynamic
factors f̂t,T S or f̂t,ML depending on the estimation method. For s > 0 matrix F holds ft , ft−1, ..., ft−s

while F̂ holds the r = q(s+1) static factors estimated by PC or f̂t , f̂t−1, ..., f̂t−s when TS or ML
estimation has been employed.

The TR statistic tends to 1 as the canonical correlation between estimated and true factors
increases. On the other end, values of T R close to 0 indicate high discrepancies between the space
spanned by the actual and the estimated factors. Thus, it is an appropriate quantitative measure
since common factors are identified only up to a rotation.6

In addition, as an anonymous reviewer pointed out, a measure which is equally important to
report is the MSE between the estimated common component and the simulated one since it is not
affected by identification issues. At each replication b = 1, ...,5000, we compute the following

3 Again, this choice was made for conformity to the original article. As noted by Poncela and Ruiz (2020), drawing
from other distributions such as the Uniform distribution, so as to ensure that the factors are truly pervasive, could
perhaps be more appropriate. An online appendix offers a table with more elaborate factor loadings for the case s > 0
but we find no significant differences from the normal distribution case. The same is true for results pertaining to the
dynamically simpler case of s = 0.
4 In Forni et al. (2018) a comparison between alternative modelling techniques is also performed, but with a focus on
forecasting.
5 It satisfies 0≤ T R≤ 1.
6 We are using this measure of the ability to reconstruct the factor space in accordance with the original article, but we
would like to stress that this is a purely descriptive statistic and we are not in the position to judge if differences between
methods are statistically significant.
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standardized mean squared errors (MSEs),

MSE(b)
method =

N
∑

i=1

N
∑

t=1

(
χi,t − χ̂method

i,t

)2

N
∑

i=1

T
∑

t=1
χ2

i,t

(7)

and then we calculate the average relative MSE of ML over either method=PC or TS or Methods 4
and 5 as reported in the extended replication section

MSErel =
1
B

B

∑
b=1

MSE(b)
ML

MSE(b)
method

(8)

3 Replication of the original results

The first exercise we perform is a narrow sense replication exercise, in which the relative perfor-
mance of three different methods for factor extraction is investigated.

The original experiment assumed s = 0 and p = 1 as well as A1 = α · Iq, D = d · IN with α ,
d being scalar-valued. The parameter u is set to 0.1 in all experiments, so that the idiosyncratic
components et can have substantially different variances and the observable series xt exhibit
different signal-to-noise ratios.

The three Tables 2, 4, 6 present a reproduction of all Monte Carlo results from the original
study of Doz et al. (2012). The original study’s results are shown in Tables 1, 3, 5 and are placed
side-by-side in all tables with our replicating study’s corresponding estimates. The data generation
process (DGP) is exactly the same as that of the original paper, the only difference is that we ran
the Monte Carlo experiment with 5000 replications, instead of 500.

The tables contain several subtables, each of which has different values of T (the sample size)
for each row and of N (the number of observable variables) for each column. The first subtable
contains the average of the T R statistic for the ML estimator and the second one the average number
of EM iterations needed to achieve convergence, as a rough proxy for computational speed. The
remaining three subtables display the relative performance of the PC and TS estimators compared
to the ML estimator, measured by the relative trace ratios T RML/T RPC, T RML/T RT S.7

As can be seen, results are qualitatively identical and quantitatively very close to the original
article: the maximum likelihood estimator appears to have a slight edge on the other two methods,
especially so when the idiosyncratic disturbances et are closer to the “ideal” factor models (that is,
both their cross-sectional correlation and autocorrelation are 0). It is noteworthy that the relative
advantage of ML tends to vanish as either the time dimension T or the cross-sectional dimension
N increase. Moreover, the extra computational cost for the extraction of factors via ML may be
substantial (especially for small samples).

7 We dropped results with (all three methods’) individual T R < 0.05 to avoid spuriously large trace ratios. Notice that
the “failure percentages” were very few compared to the 5000 simulations in each case considered (see Table B1 of the
online readme file). Further, we ensure that initial conditions satisfy stationarity restrictions.
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4 Extended replication

In this section, we extend the original Monte Carlo experiment so as to shed more light on the
relative properties of the three factor extraction methods considered in the previous section.

The additional set of simulations we run can be motivated as follows: in most cases, the interest
of the practitioner is in using the estimated factors as a by-product for a model of interest, that can
be used for forecasting/nowcasting purposes, structural analysis or more.

In a time-series context (especially at higher frequencies), it is very likely that the factors may
affect the observables in a lag-distributed pattern, so the proper value of s in Equation (1) is larger
than 0. As is well known (for example, see Bai and Ng (2007)), Equation (1) can be re-written in a
“static” form

xt = ΛΛΛFt + et ,

where the vector Ft contains ft and its lags, suitably stacked, and ΛΛΛ is the horizontal concatenation
of the Λi matrices. The dimension of the Ft vector is q · (s+1). The interest of the practitioner
is arguably to use a method that reconstructs as closely as possible the space spanned by Ft . The
possibilities we investigate are

1. compute the q-vector f̂t via ML and then stack its lags to form F̂t ;

2. compute the q-vector f̂t via TS and then stack its lags to form F̂t ;

3. compute F̂t by extracting the first q · (s+1) principal components;

4. approximate F̂t via the first principal component;

5. approximate F̂t via the first principal component and its lags.

In principle, Methods 4 and 5 may seem to be irrelevant, as in the present study the number
of static factors is assumed to be known, so evaluating methods that are known a priori to
be misspecified may seem unfair. However, we are interested in evaluating how serious this
shortcoming is, in the light of the fact that in many cases it is customary for practitioners to use the
first principal component as the “dominant” factor, regardless of any statistically oriented criterion,
(see for example Bai and Ng (2007)).

In a way, the inclusion of Methods 4 and 5 gives an idea of the performance of different methods
for correctly specified models, relative to the problems stemming from incorrect specification.
Having said this, a proper analysis of the effects of misspecification of the lag orders would deserve
a far more comprehensive treatment, that we leave for further research.

In order to initialise the algorithm, we use the method outlined in Lütkepohl (2014) to retrieve
the dynamic factor space from principal components, that entails running a VAR(1) on estimated
principal components and then performing PC extraction on the residuals. In practice:

1. given the PC estimates of the static factors F̂t , we estimate a VAR(1) via OLS:

F̂t = ΦF̂t−1 +Ut ;
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Table 7: Extended experiment

N = 10 N = 25 N = 50 N = 100
T RML

T = 50 0.58 0.65 0.69 0.70
T = 100 0.70 0.79 0.81 0.82

Number of iterations

T = 50 46 27 22 21
T = 100 25 15 13 12

T RML/T RT S

T = 50 1.57 1.25 1.12 1.11
T = 100 1.70 1.22 1.16 1.08

T RML/T RPC

T = 50 1.09 1.08 1.06 1.04
T = 100 1.13 1.09 1.05 1.03

T RML/T RPC,1

T = 50 1.76 1.65 1.62 1.59
T = 100 1.86 1.76 1.69 1.66

T RML/T RPC,1,lags

T = 50 1.59 1.54 1.52 1.50
T = 100 1.74 1.68 1.63 1.60

Notes: Comparing alternative dynamic factor extrac-
tion methods when s = 1. Data generation process
input set at: s = 1, p = 1, α = 0.9, d = 0.5, τ = 0.5,
u = 0.1, q = 2.

2. we compute the covariance matrix of the residuals Ω̂ = T−1Û ′Û ;

3. we extract the q largest eigenvalues of Ω̂ and the corresponding eigenvectors V̂ ;

4. the preliminary estimate of the dynamic factors is then given by f̃t = V̂ ′F̂t .

We performed the experiment with a wide variety of alternative values for the DGP parameters;
to be specific, we experimented with different values for α , d, q and s, thereby considering
different scenarios on factor persistence, idiosyncratic error persistence and lag specifications in
the observation equation; the full results are not tabulated here for the sake of conciseness, but are
available upon request. The results for the experiment we chose to show, as representative of the
whole set of results, are displayed in Table 7.
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Table 8: Extended experiment. Relative MSE statistics

N = 10 N = 25 N = 50 N = 100
MSE stat for ML

T = 50 0.77 0.75 0.74 0.74
T = 100 0.76 0.75 0.75 0.74

Number of iterations

T = 50 45 26 22 20
T = 100 24 15 13 12

relative MSE(ML/TS)

T = 50 0.92 0.95 0.97 0.97
T = 100 0.91 0.95 0.96 0.97

relative MSE(ML/PC)

T = 50 1.01 0.99 0.99 0.99
T = 100 1.00 1.00 1.00 1.00

relative MSE(ML/PC,1)

T = 50 0.93 0.91 0.90 0.89
T = 100 0.92 0.90 0.89 0.88

relative MSE(ML/PC,1,lags)

T = 50 0.94 0.92 0.91 0.90
T = 100 0.92 0.90 0.89 0.89

Notes: Comparing alternative dynamic factor extrac-
tion methods using relative MSE calculations when
s = 1. Data generation process input set at: s = 1,
p = 1, α = 0.9, d = 0.5, τ = 0.5, u = 0.1, q = 2.

As shown in Table 7, ML clearly dominates TS and all the methods based on a limited set of
principal components. The only way to achieve a qualitatively similar approximation to the space
spanned by the true factors is by using the full set of principal components, compared to which the
advantage of using ML becomes smaller, especially for larger values of T and N.

The EM-based ML method exhibits a noticeably larger overhead in terms of computational
complexity than in the original Monte Carlo experiment by Doz et al. (2012). This was to be
expected, since the structure of the model we are considering is significantly more complex in
terms of lag specification (s = 1 in Equation (1)).

Perhaps the relative superiority of PC to TS may be considered surprising at first sight. However,
the two methods use a different number of factors, since PC uses q · (s+1) factors and estimates
consistently the factor space, whereas TS only uses q factors (plus their lags). Further, the first step
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of the Doz et al. (2011) TS method consists of the factors estimated by PC, but their model is a
static one (no lag in the measurement equation), which is not the case here. So this result should
be taken as an indication that TS may perform rather poorly in finite samples when s > 0 and
suitable initialization conditions should be devised to alleviate factor extraction issues for small
cross-sections, at least when N ≤ 25 and T ≤ 100.

It is interesting to compare the three PC-based models under the viewpoint of misspecification:
clearly, Method 3 (PC) is a correct way to estimate the full set of static factors, whereas Methods
4 and 5 (PC,1 and PC,1,lags) are not, in that they are based on a specification of Equation (1)
where s or q are too small. It is evident — last two sub-panels of Table 7 — that the effects of
misspecification are quite dramatic and larger values of T and N do not mitigate the shortcomings.

Table 8 reports the relative MSE (Rel-MSE) of the ML common component estimator over
the TS, PC, PC,1 and PC,1,lags estimators. The ML estimator behaves very similarly to the PC
estimator however there is a clear improvement in common components estimation in MSE terms
when it comes to the remaining methods of common components estimation.

It would seem that, as long as your objective is the estimation of the common component
χt , estimation of static factors via PC is just as good as ML (which, however, dominates TS).
However, if you’re interested in attaching some kind of meaning to the estimated factors ft via
some identification restrictions, then ML appears to be the method of choice.

Our set of extra results can be summarised as follows: the most important element to consider
is persistence, either as a characteristic of latent factors or as the lag length in the observation
Equation (1).8 When persistence is high, factors are estimated more accurately with maximum
likelihood than any of the other methods we considered; the only exception is principal components
for the full set of static factors, which on the other hand has the disadvantage of requiring a set of
q · (s+1) series instead of just q. Anyhow, the near-equivalence of ML and PC requires T and/or
N to be rather large; in mid-sized samples ML retains a noticeable edge.

5 Conclusions and possible extensions

We use an independent software implementation to replicate the simulation results of Doz et al.
(2012) regarding factor estimation in dynamic settings using the benchmark principal component
method, a two step Kalman smoother based method and EM-based maximum likelihood estimation.

Our narrow sense replication exercise fully confirms the results in the original article. As for
our extended replication experiment, we find that ML is the dominant method in a wide array
of situations, notably when persistence is substantial. Those results go one step further than the
closing remark by Doz et al. (2012) “...Efficiency improvements are relevant when the factor
extraction is difficult, that is, when there are more common factors to estimate... ", by including a
richer set of dynamic specifications and the possibility of misspecification.

The present work could be extended in several directions: for instance, the lag orders s and
p and the number of dynamic factors q are assumed to be known and fixed ex ante; clearly, this

8 See also Table A7 in the online appendix where factors are constructed as “more pervasive” along with a distributed
lag effect on observables, more elaborate persistence profile for the factors and different persistent characteristics on the
idiosyncratic components.
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choice was made for conformity to the experiment we are replicating and we acknowledge it is
unrealistic and of limited usefulness for practitioners. It may be conjectured that different methods
could display different performance if the lag orders have to be selected or if q has to be estimated
through criteria such as the one put forward in Hallin and Liška (2007).

The urgency of such an extension is forcefully argued in Poncela and Ruiz (2020), in the
light of another important theoretical question: simultaneous identification of p (the VAR order
in the state transition Equation (2)) and s (the lag order of the observation Equation (1)) is an
open issue that deserves further research. The purpose of our replication exercise is to extend
the original results in Doz et al. (2012) by considering richer dynamics under the assumption
of correct specification, but we acknowledge that near-underidentification could occur in finite
samples for various values of p and s. How problematic this would be for the main purpose tackled
here (the estimation of the space spanned by the dynamic factors) remains to be seen and will be
the object of further research. However, it seems safe to conjecture that, as long as the object of
interest is the space spanned by the dynamic factors ft (as opposed to parameter point estimation),
overestimating p and/or s should not lead to serious problems.

Another possible extension – for comparison purposes — could be using a DGP taken from
some empirical exercise. These extensions, however, would broaden the present article’s scope
considerably and are left for future work.
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