Mitochondria are essential for cellular metabolism, serving as the primary source of adenosine triphosphate (ATP). This energy is generated by the oxidative phosphorylation (OXPHOS) system located in the inner mitochondrial membrane. Impairments in this machinery are linked to serious human diseases, especially in tissues with high energy demands. Assembly of the OXPHOS system requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes. The mitochondrial DNA encodes for 13 protein components, which are synthesized by mitochondrial ribosomes and inserted into the inner membrane during translation. Despite progress, key aspects of how mitochondrial gene expression is regulated remain elusive, largely due to the organelle’s limited genetic accessibility. However, emerging technologies now offer new tools to manipulate various stages of this process. In this review, we explore recent strategies that expand our ability to target mitochondria genetically.
You are not authenticated through an institution. Should you have institutional access?
Here's how to get it