The aim of this paper is to study the existence of a nontrivial solution of the following semilinear elliptic variational inequality where Ω is an open bounded subset of ℝ N (N ≥ 1), λ is a real parameter, with λ ≥ λ 1 , the first eigenvalue of the operator - Δ in H 0 1 (Ω), ψ belongs to H 1 (Ω), ψ |∂Ω ≥ 0 and p is a Carathéodory function on Ω × ℝ, which satisfies some general superlinearity growth conditions at zero and at infinity.
Inhalt
-
Öffentlich zugänglichA Linking Type Method to Solve a Class of Semilinear Elliptic Variational Inequalities10. März 2016
-
Öffentlich zugänglichOn the Principal Eigenvalue of Disconjugate BVPs with L1-Coefficients10. März 2016
-
Öffentlich zugänglichFujita’s Exponent for a Semilinear Wave Equation with Linear Damping10. März 2016
-
Öffentlich zugänglichExistence of a Closed Geodesic on Non-compact Riemannian Manifolds with Boundary10. März 2016
-
Öffentlich zugänglichInfinitely Many Solutions for Derrick’s Equation10. März 2016
-
Öffentlich zugänglichOn a Noncompact Minimization Problem of Hardy-Sobolev Type10. März 2016