The present paper studies the nonlinear elliptic equation { Δ u + λ | x | s u p - 1 + ∑ i = 1 l λ i | x | s i u 2 ∗ ( s i ) - 1 + u 2 ∗ - 1 = 0 in Ω , u > 0 in Ω , u = 0 on ∂ Ω , $\left\{\begin{aligned} \displaystyle\Delta u+\frac{\lambda}{|x|^{s}}u^{p-1}+% \sum_{i=1}^{l}\frac{\lambda_{i}}{|x|^{s_{i}}}u^{2^{\ast}(s_{i})-1}+u^{2^{\ast}% -1}&\displaystyle=0&&\displaystyle\text{in }\Omega,\\ \displaystyle u&\displaystyle>0&&\displaystyle\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\text{on }\partial\Omega,\end{% aligned}\right.$ which involves multiple Hardy–Sobolev critical exponents, where λ≠0${\lambda\neq 0}$, s∈[0,2)${s\in[0,2)}$, p∈(2,2∗(s))${p\in(2,2^{\ast}(s))}$, 0<s1<⋯<sl<2$0<s_{1}<\cdots<s_{l}<2$, λ1,…,λk>0${\lambda_{1},\dots,\lambda_{k}>0}$, λk+1,…,λl<0${\lambda_{k+1},\dots,\lambda_{l}<0}$ for some k∈[1,l]${k\in[1,l]}$ and Ω is a C1$C^{1}$ open bounded domain in ℝN$\mathbb{R}^{N}$, N≥3${N\geq 3}$, containing the origin. The existence of a positive ground state solution is established when λ>0${\lambda>0}$ and p≥2∗(sk)${p\geq 2^{\ast}(s_{k})}$.