Home Multi-Peak Positive Solutions for Nonlinear Fractional Schr\"{o}dinger Systems in ℝN
Article Open Access

Multi-Peak Positive Solutions for Nonlinear Fractional Schr\"{o}dinger Systems in ℝN

  • Weiming Liu EMAIL logo
Published/Copyright: March 19, 2016

Abstract

In this paper, we study the nonlinear fractional Schrödinger system in N. Applying the finite reduction method, we prove that the nonlinear fractional Schrödinger system has multi-peak positive solutions under some suitable conditions.

MSC 2010: 35J10; 35B99; 35J60

1 Introduction

In this paper, we are concerned with the following nonlinear fractional Schrödinger system:

(1.1) { ϵ 2 s ( - Δ ) s u + P ( x ) u = μ 1 u 2 p - 1 + β v p u p - 1 , x N , ϵ 2 s ( - Δ ) s v + Q ( x ) v = μ 2 v 2 p - 1 + β u p v p - 1 , x N ,

where ϵ>0 is a small parameter, μ1,μ2>0 and β>0 is a coupling constant, P(x) and Q(x) are potential functions, N>2s, 0<s<1, 2<p<2*(s)2, 2*(s)=2NN-2s.

Problem (1.1) arises from looking for standing waves (ψ(t,x),φ(t,x))=(exp(iEt)u(x), exp(iEt)v(x)) for the following nonlinear Schrödinger system:

{ i ψ t = ϵ 2 s ( - Δ ) s ψ + ( P ( x ) - E ) ψ - μ 1 | ψ | 2 p - 2 ψ - β | φ | p ψ p - 2 ψ , x N , t > 0 , i φ t = ϵ 2 s ( - Δ ) s φ + ( Q ( x ) - E ) φ - μ 2 | φ | 2 p - 2 φ - β | ψ | p φ p - 2 φ , x N , t > 0 ,

where i is the imaginary unit, the constants μ1 and μ2 represent the intraspecies scattering lengths and β is the interspecies scattering length. The sign of the interspecies scattering length determines whether the interaction of states is repulsive or attractive.

It is known, but not completely trivial, that (-Δ)s reduces to the standard Laplacian -Δ as s1. When s=1, problem (1.1) arises in various applications, such as nonlinear optics, plasma physics and condensed matter physics. The related problems have attracted considerable attention in recent years, and there are several results in the literature on the existence of such solutions. No matter the interspecies scattering length β is positive or negative, Lin and Wei [18] obtained least energy solutions for the two coupled nonlinear Schrödinger systems with the trap potentials by using Nehari’s manifold and derived their asymptotic behaviors by some techniques of singular perturbation problem. Chen, Lin and Wei [10] proved the existence of the positive solutions with any prescribed spikes by the reduction methods. Alves [1] dealt with the existence and the concentration of positive solutions by the mountain pass theorem. Wan and Ávila [27] utilized the category theory studying the relation between the number of positive standing waves solutions for the special system (1.1) with P(x)=Q(x) and β=0 and the topology of the set of minimum points of potentials. Pomponio [24] also proved the existence of concentrating solutions for a general system with repulsive interaction of states and that how the location of the concentration points depends strictly on the potentials. Peng and Wang [23] applied the finite reduction method to construct an unbounded sequence of non-radial positive vector solutions of segregated type in repulsive case and synchronized type in attractive case for (1.1) with p=2, N=3 for fixed ϵ. For more related results, one can refer to [6, 29, 28, 2, 3, 4, 5, 16, 20, 19] and the references therein.

When 0<s<1, the single equation

(1.2) ϵ 2 s ( - Δ ) s u + V ( y ) u = | u | p - 1 u

has been extensively investigated based on various assumptions on the potential V. Chen and Zheng [9] showed that if N=1,2,3, ϵ is sufficiently small, max{12,N4}<s<1 and V satisfies some smoothness and boundedness assumptions, then equation (1.2) has a nontrivial solution uϵ concentrated to some single point as ϵ0. Dávila, del Pino and Wei [11] generalized various existence results known for (1.2) with s=1 to the case of fractional Laplacian. Long, Peng and Yang [21] showed that (1.2) has infinitely many non-radial positive solutions and sign-changing solutions, whose energy can be made arbitrarily large. For more related results, one can refer to [7, 13, 25, 26] and the references therein.

In this paper, inspired by [21, 22], we intend to prove that the nonlinear fractional Schrödinger system (1.1) has multi-peak solutions. In [22], a positive solution with m-peaks concentrating near x0 was found for (1.2) with s=1. Compared with the operator -Δ, which is local, the operator (-Δ)s with 0<s<1 on N is nonlocal. Unlike the local case s=1, the leading order of the associated reduced functional in a variational reduction procedure is of polynomial instead of exponential order, due to the nonlocal effect. So we need to establish some new necessary estimates for the Lyapunov–Schmidt reduction.

As far as we know, there are no results on the existence of multi-peak solutions to the nonlinear fractional Schrödinger system. In this paper, we will present some results which contribute to this respect.

We consider the problem

(1.3) { ϵ 2 s ( - Δ ) s u + P ( x ) u = μ 1 u 2 p - 1 + β v p u p - 1 , x N , ϵ 2 s ( - Δ ) s v + Q ( x ) v = μ 2 v 2 p - 1 + β u p v p - 1 , x N ,

where P(x) and Q(x) are bounded positive continuous functions on N satisfying the following assumptions:

  1. P has a strict local maximum at some point x0N, that is, for some δ>0, one has P(x)<P(x0) for all 0<|x-x0|<δ.

  2. Q has a strict local maximum at some point x0N, that is, for some δ>0, one has Q(x)<Q(x0) for all 0<|x-x0|<δ.

  3. infxNP(x)>0, infxNQ(x)>0, and for all y,zN, there exist positive constants C and θ such that |P(y)-P(z)|C|y-z|θ and |Q(y)-Q(z)|C|y-z|θ.

Making the change of variable xϵx, we can rewrite (1.3) as the following equation:

(1.4) { ( - Δ ) s u + P ( ϵ x ) u = μ 1 u 2 p - 1 + β v p u p - 1 , x N , ( - Δ ) s v + Q ( ϵ x ) v = μ 2 v 2 p - 1 + β u p v p - 1 , x N .

The norm of Hs(N) is defined by

u s = u , u , u H s ( N ) ,

where

u 1 , u 2 = u 1 , u 2 s + N u 1 u 2 𝑑 x
= N N ( u 1 ( x ) - u 1 ( y ) ) ( u 2 ( x ) - u 2 ( y ) ) | x - y | N + 2 s 𝑑 x 𝑑 y + N u 1 u 2 𝑑 x .

For any function K(x)>0, we use s,ϵ,K to denote the norm in Hϵ,Ks(N), that is to say

u s , ϵ , K = ( N N | u ( x ) - u ( y ) | 2 | x - y | N + 2 s 𝑑 x 𝑑 y + K ( ϵ x ) u 2 d x ) 1 2 for all u H ϵ , K s ( N ) .

Define Hϵs to be the product space Hϵ,Ps(N)×Hϵ,Qs(N) with the norm

( u , v ) s , ϵ 2 = u s , ϵ , P 2 + v s , ϵ , Q 2 .

Denote the solution of the following problem by w:

(1.5) { ( - Δ ) s u + u = u 2 p - 1 , u > 0 in N , u ( 0 ) = max x N u ( x ) .

It is well known that the unique solution w of (1.5) satisfies w(x)=w(|x|) and w<0 (see [14, 15]).

Note that

w λ j , μ j = ( λ j μ j ) 1 2 ( p - 1 ) w ( λ j 1 2 s x )

solves

{ ( - Δ ) s u + λ j u = μ j u 2 p - 1 , u > 0 in N , u ( 0 ) = max x N u ( x ) ,

where j=1,2 and λ1=P(x0), λ2=Q(x0). Denote

w λ 1 , y k , ϵ = w ( λ 1 1 2 s ( x - y k ϵ ) ) , w λ 2 , z k , ϵ = w ( λ 2 1 2 s ( x - z k ϵ ) ) ,
u ϵ , μ 1 , y k = ( λ 1 μ 1 ) 1 2 ( p - 1 ) w ( λ 1 1 2 s ( x - y k ϵ ) ) = ( λ 1 μ 1 ) 1 2 ( p - 1 ) w λ 1 , y k , ϵ ,
v ϵ , μ 2 , z k = ( λ 2 μ 2 ) 1 2 ( p - 1 ) w ( λ 2 1 2 s ( x - z k ϵ ) ) = ( λ 2 μ 2 ) 1 2 ( p - 1 ) w λ 2 , z k , ϵ ,
𝐲 = ( y 1 , y 2 , , y l ) , U ϵ , μ 1 , 𝐲 = k = 1 l u ϵ , μ 1 , y k ,
𝐳 = ( z 1 , z 2 , , z m ) , V ϵ , μ 2 , 𝐳 = k = 1 m v ϵ , μ 2 , z k .

Let Br={xN:|x|<r}, and B¯r be its closure. For δ>0, and any positive integers l and m, we define

D ϵ , δ l , m = { ( 𝐲 , 𝐳 ) := ( y 1 , , y l , z 1 , , z m ) ( l ) N × ( m ) N : a , b B ¯ δ ( x 0 ) and | a - b | ϵ 4 5 for all
a , b ( y 1 , , y l , z 1 , , z m ) , a b } .

Denote

E ϵ , l , m = { ( φ , ψ ) H ϵ s : φ , u ϵ , μ 1 , y j y i j s , ϵ , P = ψ , v ϵ , μ 2 , z k z i k s , ϵ , Q = 0 , j = 1 , , l , k = 1 , , m } ,

where i=1,2,,N. Set

M ϵ , l , m = { ( 𝐲 , 𝐳 , φ , ψ ) : ( 𝐲 , 𝐳 ) D ϵ , δ l , m , ( φ , ψ ) E ϵ , l , m } .

The main result of this paper is as follows.

Theorem 1.1

Let assumptions H1H3 hold. Then for each l,m=1,2, there exist ϵ0,β* such that for all ϵ(0,ϵ0),β(0,β*), problem (1.4) has a solution (uϵ,vϵ) of the form

( u ϵ , v ϵ ) = ( k = 1 l u ϵ , μ 1 , y ϵ k + φ ϵ , j = 1 m v ϵ , μ 2 , z ϵ j + ψ ϵ )

for some points yϵk,zϵjN,k=1,,l, j=1,,m, and (φϵ,ψϵ)Hϵs, satisfying

y ϵ k x 0 , z ϵ j x 0 ,

for all a,b(yϵ1,,yϵl,zϵ1,,zϵm), ab, a,bB¯δ(x0), |a-b|ϵ45, and

( φ ϵ , ψ ϵ ) s , ϵ 0 , as ϵ 0 .

Our paper is organized as follows. In Section 2, we will give some preliminaries. In Section 3, we do the finite reduction. In Section 4, we prove our main result. Some technical estimates are left in Appendix A.

Notations.

  1. We simply write f to mean the Lebesgue integral of f(x) in N.

  2. The ordinary inner product between two vectors a,bN will be denoted by ab.

  3. C,C~,ci denote generic constants, which may vary inside a chain of inequalities.

  4. We use O(t),o(t) to mean |O(t)|C|t|, o(t)t0 as t0; o(1) denotes quantities that tend to 0 as |y|.

2 Some Preliminaries

In this section, we recall some properties of the fractional order Sobolev spaces and give some results which are crucial in our proof of the main theorem.

Let 0<s<1. Various definitions of the fractional Laplacian (-Δ)sf(x) of a function f defined in N are available, depending on its regularity and growth properties.

The fractional Laplacian (-Δ)sf of a function fHs(N) is defined in terms of its Fourier transform by

( - Δ ) s ^ f ( ξ ) = | ξ | 2 s f ^ ( ξ ) ,

where ^ is the Fourier transform. When f has some sufficiently regularity, the fractional Laplacian of a function f:N is expressed by the formula

( - Δ ) s f ( x ) = C N , s P . V . N f ( x ) - f ( y ) | x - y | N + 2 s 𝑑 y = C N , s lim ϵ 0 N B ϵ ( x ) f ( x ) - f ( y ) | x - y | N + 2 s 𝑑 y ,

where CN,s=π-(2s+N/2)Γ(N/2+s)Γ(-s). This integral makes sense directly when s<12 and fC0,α(N) with α>2s, or if fC1,α(N) with 1+2α>2s. It is well known that (-Δ)s on N with 0<s<1 is a nonlocal operator.

When s(0,1), the space Hs(N)=Ws,2(N) is defined by

H s ( N ) = { u L 2 ( N ) : | u ( x ) - u ( y ) | | x - y | N 2 + s L 2 ( N × N ) }
= { u L 2 ( N ) : N ( 1 + | ξ | 2 s ) | u ^ ( ξ ) | 2 d ξ < }

and the norm is

u s = ( N N | u ( x ) - u ( y ) | 2 | x - y | N + 2 s 𝑑 x 𝑑 y + N | u | 2 𝑑 x ) 1 2 .

Here the term

[ u ] s := ( N N | u ( x ) - u ( y ) | 2 | x - y | N + 2 s 𝑑 x 𝑑 y ) 1 2

is the so-called Gagliardo (semi-)norm of u. The following identity yields the relation between the fractional operator (-Δ)s and the fractional Sobolev space Hs(N):

[ u ] s = C ( N | ξ | 2 s | u ^ ( ξ ) | 2 𝑑 ξ ) 1 2 = C ( - Δ ) s 2 u L 2 ( N )

for a suitable positive constant C depending only on s and N.

Lemma 2.1

Lemma 2.1 ([12])

The following embeddings are continuous:

  1. Hs(N)Lq(N), 2q2NN-2s, if N>2s,

  2. Hs(N)Lq(N), 2q, if N=2s,

  3. Hs(N)Cbj(N), if N<2(s-j),

where

C b j ( N ) = { u C j ( N ) : D K u is bounded on N for | K | j } .

Moreover, for any R>0 and p[1,2*(s)) the embedding Hs(BR)Lp(BR) is compact.

Now, we recall some known results for the limit equation (1.5). If s=1, the uniqueness and non-degeneracy of the ground state U for (1.5) are due to [17]. In the celebrated paper [14], Frank and Lenzmann proved the uniqueness of ground state solution U(x)=U(|x|)0 for N=1,0<s<1,1<p<2*(s)-1. Recently, Frank, Lenzmann and Silvestre [15] obtained the non-degeneracy of ground state solutions for (1.5) in arbitrary dimension N1 and any admissible exponent 1<p<2*(s)-1.

For convenience, we summarize the properties of the ground state U of (1.5) which can be found in [14, 15].

Lemma 2.2

Let N1, s(0,1) and 1<p<2*(s)-1. Then the following hold.

  1. (Uniqueness) The ground state solution U H s ( N ) for equation ( 1.5 ) is unique.

  2. (Symmetry, regularity and decay) U ( x ) is radial, positive and strictly decreasing in | x | . Moreover, the function U belongs to H 2 s + 1 ( N ) C ( N ) and satisfies

    C 1 1 + | x | N + 2 s U ( x ) C 2 1 + | x | N + 2 s , x N ,

    with some constants C2C1>0.

  3. (Non-degeneracy) The linearized operator L 0 = ( - Δ ) s + 1 - p | U | p - 1 is non-degenerate, i.e., its kernel is given by

    ker L 0 = span { x 1 U , x 2 U , , x N U } .

By [15, Lemma C.2], xjU has the following decay estimate for j=1,,N:

| x j U | C 1 + | x | N + 2 s .

From Lemma 2.2, we see the ground bound state solution as 1|x|N+2s when |x|. Fortunately, this polynomial decay is enough for us in the estimates of our proof.

3 Variational Reduction

In this section, we will do the finite reduction.

Define

I ϵ ( u , v ) = 1 2 u , u s + 1 2 N P ( ϵ x ) | u | 2 𝑑 x + 1 2 v , v s + 1 2 N Q ( ϵ x ) | v | 2 𝑑 x
   - 1 2 p N ( μ 1 | u | 2 p + μ 2 | v | 2 p ) 𝑑 x - β p N | u | p | v | p 𝑑 x for all ( u , v ) H ϵ s .

It is easy to check that

u , φ s + N P ( ϵ x ) u φ 𝑑 x + v , ψ s + N Q ( ϵ x ) v ψ 𝑑 x - ( 2 p - 1 ) N ( μ 1 U ϵ , μ 1 , 𝐲 2 p - 2 u φ + μ 2 V ϵ , μ 2 , 𝐳 2 p - 2 v ψ ) 𝑑 x
- β N ( ( p - 1 ) U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 2 v ψ + ( p - 1 ) V ϵ , μ 2 , 𝐳 p U ϵ , μ 1 , 𝐲 p - 2 u φ + p U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 1 u ψ + p U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 1 φ v ) 𝑑 x

is a bounded bi-linear functional in Eϵ,l,m. Hence, by the Lax–Milgram theorem there is a bounded linear operator from Eϵ,l,m to Eϵ,l,m such that

( u , v ) , ( φ , ψ ) s , ϵ = u , φ s + N P ( ϵ x ) u φ 𝑑 x + v , ψ s + N Q ( ϵ x ) v ψ 𝑑 x
   - ( 2 p - 1 ) N ( μ 1 U ϵ , μ 1 , 𝐲 2 p - 2 u φ + μ 2 V ϵ , μ 2 , 𝐳 2 p - 2 v ψ ) 𝑑 x
   - β N ( ( p - 1 ) U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 2 v ψ + ( p - 1 ) V ϵ , μ 2 , 𝐳 p U ϵ , μ 1 , 𝐲 p - 2 u φ
   + p U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 1 u ψ + p U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 1 φ v ) d x .

The following result implies that is invertible in Eϵ,l,m.

Lemma 3.1

Let 0<β<β*. There exists ϵ0>0 such that, for ϵ(0,ϵ0),

( u , v ) s , ϵ C ( u , v ) s , ϵ

for all (𝐲,𝐳)Dϵ,δl,m, (u,v)Eϵ,l,m, where C>0 is a positive constant.

Proof.

We prove the lemma by a contradiction argument. Suppose to the contrary that there exist sequences ϵn0, yn,jx0, j=1,,l, zn,kx0, k=1,,m, (𝐲n,𝐳n)=(yn,1,,yn,l,zn,1,,zn,m)Dϵn,δl,m and (un,vn)Eϵn,l,m such that

( u n , v n ) s , ϵ = o ( 1 ) ( u n , v n ) s , ϵ .

Then we have

(3.1) ( u n , v n ) , ( φ , ψ ) s , ϵ = o ( 1 ) ( u n , v n ) s , ϵ ( φ , ψ ) s , ϵ for all ( φ , ψ ) E ϵ n , l , m .

We may assume that

(3.2) ( u n , v n ) s , ϵ = 1 .

By (3.1) we have

u n , φ s + N P ( ϵ x ) u n φ 𝑑 x + v n , ψ s + N Q ( ϵ x ) v n ψ 𝑑 x
   - ( 2 p - 1 ) N ( μ 1 U ϵ , μ 1 , 𝐲 2 p - 2 u n φ + μ 2 V ϵ , μ 2 , 𝐳 2 p - 2 v n ψ ) d x - β N ( ( p - 1 ) U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 2 v n ψ
   + ( p - 1 ) V ϵ , μ 2 , 𝐳 p U ϵ , μ 1 , 𝐲 p - 2 u n φ + p U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 1 u n ψ + p U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 1 φ v n ) d x
(3.3) = o ( 1 ) ( φ , ψ ) s , ϵ for all ( φ , ψ ) E ϵ n , l , m .

Let u~n,j(x)=un(λ1-12sx+yn,jϵn), v~n,k(x)=vn(λ2-12sx+zn,kϵn), j=1,,l, k=1,,m. By (3.2),

u ~ n , j , u ~ n , j s + λ 1 - 1 N P ( ϵ n λ 1 - 1 2 s x + y n , j ) u ~ n , j 2 ( x ) 𝑑 x C ,
v ~ n , k , v ~ n , k s + λ 2 - 1 N Q ( ϵ n λ 2 - 1 2 s x + z n , k ) v ~ n , k 2 ( x ) 𝑑 x C .

Thus we may assume the existence of uj*,vk*H1(N) such that

u ~ n , j u j * weakly in H loc 1 ( N ) , v ~ n , k v k * weakly in H loc 1 ( N )
u ~ n , j u j * strongly in L loc 2 ( N ) , v ~ n , k v k * strongly in L loc 2 ( N ) ,

as n+, where j=1,,l, k=1,,m.

From

u n , u ϵ , μ 1 , y j y i j s , ϵ , P = v n , v ϵ , μ 2 , z k z i k s , ϵ , Q = 0

for j=1,,l, k=1,,m and i=1,2,,N, we obtain

u ~ n , j , w ( x ) x i s , ϵ , P = v ~ n , k , w ( x ) x i s , ϵ , Q = 0

for j=1,,l, k=1,,m and i=1,2,,N. So uj* and vk* satisfy

(3.4) u j * , w ( x ) x i s , ϵ , P = v k * , w ( x ) x i s , ϵ , Q = 0

for j=1,,l, k=1,,m and i=1,2,,N.

Define

E ~ ϵ , l , m = { ( φ , ψ ) E ϵ , l , m : φ , w ( x ) x i s , ϵ , P = ψ , w ( x ) x i s , ϵ , Q = 0 , j = 1 , , l , k = 1 , , m } ,

where i=1,2,,N.

Let φC0(N)E~ϵ,l,m and take φj:=φ(λ112s(x-yn,jϵn))C0(N). Then choosing (φ,ψ)=(φj,0) in (3.3), and choosing ϵ small enough, we find

0 = u j * , φ s + N u j * φ 𝑑 x - ( 2 p - 1 ) N w 2 p - 2 u j * φ 𝑑 x .

Since C0(N) is dense in H1(N), it is easy to prove that

(3.5) 0 = u j * , φ s + N u j * φ 𝑑 x - ( 2 p - 1 ) N w 2 p - 2 u j * φ 𝑑 x for all φ E ~ ϵ , l , m .

But (3.5) is true for φ=k=1Nckw(x)xk. Thus (3.5) is true for any φH1(N), and hence uj*=k=1Nckw(x)xk. It follows from (3.4) that c1==cN=0 and uj*=0.

The same argument yields vk*=0.

Thus, we have

o n ( 1 ) = u n , u n s + N P ( ϵ x ) u n 2 𝑑 x + v n , v n s + N Q ( ϵ x ) v n 2 𝑑 x - ( 2 p - 1 ) N ( μ 1 U ϵ , μ 1 , 𝐲 2 p - 2 u n 2 + μ 2 V ϵ , μ 2 , 𝐳 2 p - 2 v n 2 ) 𝑑 x
   + ( p - 1 ) V ϵ , μ 2 , 𝐳 p U ϵ , μ 1 , 𝐲 p - 2 u n 2
   - β N ( ( p - 1 ) U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 2 v n 2 + p U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 1 u n 2 + p U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 1 v n 2 ) 𝑑 x
( u n , v n ) s , ϵ 2 - C β ( u n , v n ) s , ϵ 2 + o n ( 1 ) + o R ( 1 ) .

If β<β*:=1C, and for large n and R, we get a contradiction. ∎

Let us recall the following results which are used later.

Lemma 3.2

If a,b0, for q>3, there exists C>0 such that

| | a + b | q - a q - b q - q a q - 1 b - q b q - 1 a | C ( a q - 2 b 2 + b q - 2 a 2 ) .

Proposition 3.3

For ϵ>0 sufficiently small, there is a C1 map with respect to (𝐲,𝐳) from Dϵ,δl,m to Eϵ,l,m: (φ,ψ)=(φ(𝐲,𝐳),ψ(𝐲,𝐳)), satisfying (φ,ψ)Eϵ,l,m and

J ϵ ( 𝐲 , 𝐳 , φ , ψ ) ( φ , ψ ) , ( g , h ) = 0 for all ( g , h ) E ϵ , l , m .

Moreover, there is a constant C such that

( φ , ψ ) s , ϵ C ( ϵ θ + k = 1 l ( P ( x 0 ) - P ( y k ) ) + k = 1 m ( Q ( x 0 ) - Q ( z k ) ) + k j ( ϵ | y k - y j | ) N + 2 s
(3.6)    + k j ( ϵ | z k - z j | ) N + 2 s + k = 1 m j = 1 l ( ϵ | y j - z k | ) ( p - 1 ) ( N + 2 s ) ) .

Proof.

Set

J ϵ ( 𝐲 , 𝐳 , φ , ψ ) = I ϵ ( U ϵ , μ 1 , 𝐲 + φ , V ϵ , μ 2 , 𝐳 + ψ ) , where ( 𝐲 , 𝐳 , φ , ψ ) M ϵ , l , m .

By direct computation, we see that

J ϵ ( 𝐲 , 𝐳 , φ , ψ ) = I ϵ ( U ϵ , μ 1 , 𝐲 + φ , V ϵ , μ 2 , 𝐳 + ψ )
= 1 2 U ϵ , μ 1 , 𝐲 + φ , U ϵ , μ 1 , 𝐲 + φ s + 1 2 N P ( ϵ x ) ( U ϵ , μ 1 , 𝐲 + φ ) 2 𝑑 x
   + 1 2 V ϵ , μ 2 , 𝐳 + ψ , V ϵ , μ 2 , 𝐳 + ψ s + 1 2 N Q ( ϵ x ) ( V ϵ , μ 2 , 𝐳 + ψ ) 2 𝑑 x
   - 1 2 p N ( μ 1 ( U ϵ , μ 1 , 𝐲 + φ ) 2 p + μ 2 ( V ϵ , μ 2 , 𝐳 + ψ ) 2 p ) 𝑑 x
   - β p N ( U ϵ , μ 1 , 𝐲 + φ ) p ( V ϵ , μ 2 , 𝐳 + ψ ) p 𝑑 x
= 1 2 U ϵ , μ 1 , 𝐲 , U ϵ , μ 1 , 𝐲 s + 1 2 N P ( ϵ x ) U ϵ , μ 1 , 𝐲 2 𝑑 x + 1 2 V ϵ , μ 2 , 𝐳 , V ϵ , μ 2 , 𝐳 s + 1 2 N Q ( ϵ x ) V ϵ , μ 2 , 𝐳 2 𝑑 x
   - 1 2 p N ( μ 1 U ϵ , μ 1 , 𝐲 2 p + μ 2 V ϵ , μ 2 , 𝐳 2 p ) 𝑑 x - β p N U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p 𝑑 x
   + N ( P ( ϵ x ) - P ( x 0 ) ) U ϵ , μ 1 , 𝐲 φ 𝑑 x + N ( Q ( ϵ x ) - Q ( x 0 ) ) V ϵ , μ 2 , 𝐳 ψ 𝑑 x
   - μ 1 N ( U ϵ , μ 1 , 𝐲 2 p - 1 - j = 1 l u ϵ , μ 1 , y j 2 p - 1 ) φ 𝑑 x - μ 2 N ( V ϵ , μ 2 , 𝐳 2 p - 1 - j = 1 m v ϵ , μ 2 , z j 2 p - 1 ) ψ 𝑑 x
   - β N ( V ϵ , μ 2 , 𝐳 p U ϵ , μ 1 , 𝐲 p - 1 φ + U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 1 ψ ) 𝑑 x + 1 2 φ , φ s + 1 2 N P ( ϵ x ) | φ | 2 𝑑 x
   + 1 2 ψ , ψ s + 1 2 N Q ( ϵ x ) | ψ | 2 𝑑 x - 2 p - 1 2 N ( μ 1 U ϵ , μ 1 , 𝐲 2 p - 2 φ 2 + μ 2 V ϵ , μ 2 , 𝐳 2 p - 2 ψ 2 ) 𝑑 x
   - β 2 N ( ( p - 1 ) U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 2 ψ 2 + ( p - 1 ) V ϵ , μ 2 , 𝐳 p U ϵ , μ 1 , 𝐲 p - 2 φ 2 + 2 p U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 1 φ ψ ) 𝑑 x
   - 1 2 p N ( μ 1 ( U ϵ , μ 1 , 𝐲 + φ ) 2 p + μ 2 ( V ϵ , μ 2 , 𝐳 + ψ ) 2 p ) 𝑑 x + N ( μ 1 U ϵ , μ 1 , 𝐲 2 p - 1 φ + μ 2 V ϵ , μ 2 , 𝐳 2 p - 1 ψ ) 𝑑 x
   + 2 p - 1 2 N ( μ 1 U ϵ , μ 1 , 𝐲 2 p - 2 φ 2 + μ 2 V ϵ , μ 2 , 𝐳 2 p - 2 ψ 2 ) 𝑑 x + 1 2 p N ( μ 1 U ϵ , μ 1 , 𝐲 2 p + μ 2 V ϵ , μ 2 , 𝐳 2 p ) 𝑑 x
   - β p N ( ( U ϵ , μ 1 , 𝐲 + φ ) p ( V ϵ , μ 2 , 𝐳 + ψ ) p - U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - p U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 1 ψ - p U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p φ
   - p ( p - 1 ) 2 U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 2 ψ 2 - p ( p - 1 ) 2 V ϵ , μ 2 , 𝐳 p U ϵ , μ 1 , 𝐲 p - 2 φ 2 - p 2 U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 1 φ ψ ) d x .

Hence,

J ϵ ( 𝐲 , 𝐳 , φ , ψ ) = J ϵ ( 𝐲 , 𝐳 , 0 , 0 ) + f ϵ , 𝐲 , 𝐳 ( φ , ψ ) + 1 2 φ , ψ + R ϵ , 𝐲 , 𝐳 ( φ , ψ ) ,

where

f ϵ , 𝐲 , 𝐳 ( φ , ψ ) = N ( P ( ϵ x ) - P ( x 0 ) ) U ϵ , μ 1 , 𝐲 φ 𝑑 x + N ( Q ( ϵ x ) - Q ( x 0 ) ) V ϵ , μ 2 , 𝐳 ψ 𝑑 x
   - μ 1 N ( U ϵ , μ 1 , 𝐲 2 p - 1 - j = 1 l u ϵ , μ 1 , y j 2 p - 1 ) φ 𝑑 x - μ 2 N ( V ϵ , μ 2 , 𝐳 2 p - 1 - j = 1 m v ϵ , μ 2 , z j 2 p - 1 ) ψ 𝑑 x
   - β N ( V ϵ , μ 2 , 𝐳 p U ϵ , μ 1 , 𝐲 p - 1 φ + U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 1 ψ ) 𝑑 x ,

is the bounded linear map from Eϵ,l,m to Eϵ,l,m in Lemma 3.1, and

R ϵ , 𝐲 , 𝐳 ( φ , ψ ) = - 1 2 p N ( μ 1 ( U ϵ , μ 1 , 𝐲 + φ ) 2 p + μ 2 ( V ϵ , μ 2 , 𝐳 + ψ ) 2 p ) 𝑑 x + N ( μ 1 U ϵ , μ 1 , 𝐲 2 p - 1 φ + μ 2 V ϵ , μ 2 , 𝐳 2 p - 1 ψ ) 𝑑 x
   + 2 p - 1 2 N ( μ 1 U ϵ , μ 1 , 𝐲 2 p - 2 φ 2 + μ 2 V ϵ , μ 2 , 𝐳 2 p - 2 ψ 2 ) 𝑑 x + 1 2 p N ( μ 1 U ϵ , μ 1 , 𝐲 2 p + μ 2 V ϵ , μ 2 , 𝐳 2 p ) 𝑑 x
   - β p N ( ( U ϵ , μ 1 , 𝐲 + φ ) p ( V ϵ , μ 2 , 𝐳 + ψ ) p - U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - p U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 1 ψ
   - p U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p φ - p ( p - 1 ) 2 U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 2 ψ 2 - p ( p - 1 ) 2 V ϵ , μ 2 , 𝐳 p U ϵ , μ 1 , 𝐲 p - 2 φ 2
   - p 2 U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 1 φ ψ ) d x .

It is not difficult to verify that fϵ,𝐲,𝐳(φ,ψ) is a bounded linear functional in Eϵ,l,m. Therefore, there exists a unique element of Eϵ,l,m, still denoted by fϵ,𝐲,𝐳(φ,ψ), such that

f ϵ , 𝐲 , 𝐳 ( φ , ψ ) = f ϵ , 𝐲 , 𝐳 , ( φ , ψ ) .

Thus, to find a critical point for Jϵ(𝐲,𝐳,φ,ψ), we only need to solve

(3.7) f ϵ , 𝐲 , 𝐳 + ( φ , ψ ) + R ϵ , 𝐲 , 𝐳 ( φ , ψ ) = 0 .

From Lemma 3.1 we know that is invertible. Therefore, (3.7) can be rewritten as

( φ , ψ ) = 𝒜 ( φ , ψ ) := - - 1 f ϵ , 𝐲 , 𝐳 - - 1 R ϵ , 𝐲 , 𝐳 ( φ , ψ ) .

Set

𝒩 = { ( φ , ψ ) H ϵ s : ( φ , ψ ) s , ϵ ϵ θ - τ + k = 1 l ( P ( x 0 ) - P ( y k ) ) 1 - τ + k = 1 m ( Q ( x 0 ) - Q ( z k ) ) 1 - τ
   + k j ( ϵ | y k - y j | ) ( 1 - τ ) ( N + 2 s ) + k j ( ϵ | z k - z j | ) ( 1 - τ ) ( N + 2 s ) + k = 1 m j = 1 l ( ϵ | y j - z k | ) ( 1 - τ ) ( p - 1 ) ( N + 2 s ) } ,

where τ>0 is small.

When p>3, for any (u1,v1),(u2,v2)Eϵ,l,m, we can get

| R ϵ , 𝐲 , 𝐳 ( φ , ψ ) |
   | - 1 2 p N ( μ 1 ( U ϵ , μ 1 , 𝐲 + φ ) 2 p + μ 2 ( V ϵ , μ 2 , 𝐳 + ψ ) 2 p ) d x + N ( μ 1 U ϵ , μ 1 , 𝐲 2 p - 1 φ + μ 2 V ϵ , μ 2 , 𝐳 2 p - 1 ψ ) d x
      + 2 p - 1 2 N ( μ 1 U ϵ , μ 1 , 𝐲 2 p - 2 φ 2 + μ 2 V ϵ , μ 2 , 𝐳 2 p - 2 ψ 2 ) d x + 1 2 p N ( μ 1 U ϵ , μ 1 , 𝐲 2 p + μ 2 V ϵ , μ 2 , 𝐳 2 p ) d x |
   + | β | p | N ( ( U ϵ , μ 1 , 𝐲 + φ ) p ( V ϵ , μ 2 , 𝐳 + ψ ) p - U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - p U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 1 ψ - p U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p φ
      - p ( p - 1 ) 2 U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 2 ψ 2 - p ( p - 1 ) 2 V ϵ , μ 2 , 𝐳 p U ϵ , μ 1 , 𝐲 p - 2 φ 2 - p 2 U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 1 φ ψ ) d x |
   C N ( U ϵ , μ 1 , 𝐲 2 p - 3 φ 3 + V ϵ , μ 2 , 𝐳 2 p - 3 ψ 3 ) 𝑑 x
      + C N ( U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 3 ψ 3 + U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 2 φ ψ 2 + U ϵ , μ 1 , 𝐲 p - 2 V ϵ , μ 2 , 𝐳 p - 1 φ 2 ψ + U ϵ , μ 1 , 𝐲 p - 3 V ϵ , μ 2 , 𝐳 p φ 3 ) 𝑑 x
   C ( φ , ψ ) s , ϵ 3

and

| R ϵ , 𝐲 , 𝐳 ( φ , ψ ) , ( u 1 , v 1 ) |
   = | - N ( μ 1 ( U ϵ , μ 1 , 𝐲 + φ ) 2 p - 1 u 1 + μ 2 ( V ϵ , μ 2 , 𝐳 + ψ ) 2 p - 1 v 1 ) d x + N ( μ 1 U ϵ , μ 1 , 𝐲 2 p - 1 u 1 + μ 2 V ϵ , μ 2 , 𝐳 2 p - 1 v 1 ) d x
      + ( 2 p - 1 ) N ( μ 1 U ϵ , μ 1 , 𝐲 2 p - 2 φ u 1 + μ 2 V ϵ , μ 2 , 𝐳 2 p - 2 ψ v 1 ) d x |
      + | β | | N ( ( U ϵ , μ 1 , 𝐲 + φ ) p - 1 ( V ϵ , μ 2 , 𝐳 + ψ ) p u 1 + ( U ϵ , μ 1 , 𝐲 + φ ) p ( V ϵ , μ 2 , 𝐳 + ψ ) p - 1 v 1
      - U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 1 v 1 - U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p u 1 - ( p - 1 ) U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 2 ψ v 1
      - ( p - 1 ) V ϵ , μ 2 , 𝐳 p U ϵ , μ 1 , 𝐲 p - 2 φ u 1 - p U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 1 ψ u 1 - p U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 1 φ v 1 ) d x |
   C N ( U ϵ , μ 1 , 𝐲 2 p - 3 φ 2 u 1 + V ϵ , μ 2 , 𝐳 2 p - 3 ψ 2 v 1 ) d x + C N ( U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 2 ψ 2 u 1 + U ϵ , μ 1 , 𝐲 p - 2 V ϵ , μ 2 , 𝐳 p - 1 φ ψ u 1
      + U ϵ , μ 1 , 𝐲 p - 3 V ϵ , μ 2 , 𝐳 p φ 2 u 1 + U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 3 ψ 2 v 1 + U ϵ , μ 1 , 𝐲 p - 1 V ϵ , μ 2 , 𝐳 p - 2 φ ψ v 1 + U ϵ , μ 1 , 𝐲 p - 2 V ϵ , μ 2 , 𝐳 p - 1 φ 2 v 1 ) d x
   C ( φ , ψ ) s , ϵ 2 ( u 1 , v 1 ) s , ϵ .

Similarly,

| R ϵ , 𝐲 , 𝐳 ′′ ( φ , ψ ) ( u 1 , v 1 ) , ( u 2 , v 2 ) | C ( φ , ψ ) s , ϵ ( u 1 , v 1 ) s , ϵ ( u 2 , v 2 ) s , ϵ .

Hence Lemma 3.4 below implies

𝒜 ( φ , ψ ) s , ϵ C f ϵ , 𝐲 , 𝐳 s , ϵ + C ( φ , ψ ) s , ϵ 2
C ( ϵ θ + k = 1 l ( P ( x 0 ) - P ( y k ) ) + k = 1 m ( Q ( x 0 ) - Q ( z k ) ) + k j ( ϵ | y k - y j | ) N + 2 s
   + k j ( ϵ | z k - z j | ) N + 2 s + k = 1 m j = 1 l ( ϵ | y j - z k | ) ( p - 1 ) ( N + 2 s ) )
   + C ( ϵ θ - τ + k = 1 l ( P ( x 0 ) - P ( y k ) ) 1 - τ + k = 1 m ( Q ( x 0 ) - Q ( z k ) ) 1 - τ + k j ( ϵ | y k - y j | ) ( 1 - τ ) ( N + 2 s )
   + k j ( ϵ | z k - z j | ) ( 1 - τ ) ( N + 2 s ) + k = 1 m j = 1 l ( ϵ | y j - z k | ) ( 1 - τ ) ( p - 1 ) ( N + 2 s ) ) 2
ϵ θ - τ + k = 1 l ( P ( x 0 ) - P ( y k ) ) 1 - τ + k = 1 m ( Q ( x 0 ) - Q ( z k ) ) 1 - τ + k j ( ϵ | y k - y j | ) ( 1 - τ ) ( N + 2 s )
(3.8)    + k j ( ϵ | z k - z j | ) ( 1 - τ ) ( N + 2 s ) + k = 1 m j = 1 l ( ϵ | y j - z k | ) ( 1 - τ ) ( p - 1 ) ( N + 2 s ) .

Thus, 𝒜 maps 𝒩 into 𝒩. Meanwhile,

𝒜 ( φ 1 , ψ 1 ) - 𝒜 ( φ 2 , ψ 2 ) s , ϵ = - 1 R ϵ , 𝐲 , 𝐳 ( φ 1 , ψ 1 ) - - 1 R ϵ , 𝐲 , 𝐳 ( φ 2 , ψ 2 ) s , ϵ
C R ϵ , 𝐲 , 𝐳 ( φ 1 , ψ 1 ) - R ϵ , 𝐲 , 𝐳 ( φ 2 , ψ 2 ) s , ϵ

C R ϵ , 𝐲 , 𝐳 ′′ ( ϵ ( φ 1 , ψ 1 ) + ( 1 - ϵ ) ( φ 2 , ψ 2 ) ) s , ϵ ( φ 1 , ψ 1 ) - ( φ 2 , ψ 2 ) s , ϵ
1 2 ( φ 1 , ψ 1 ) - ( φ 2 , ψ 2 ) s , ϵ .

Thus, we have proved that 𝒜 is a contraction map.

Using the same argument, we obtain a similar result for the case 2<p3.

Now applying the contraction mapping theorem, we can find a unique (φ,ψ) such that (3.7) holds. Moreover, it follows from (3.8) that (3.6) holds. ∎

Lemma 3.4

There exists a constant C>0 independent of ϵ such that

f ϵ , 𝐲 , 𝐳 s , ϵ C ( ϵ θ + k = 1 l ( P ( x 0 ) - P ( y k ) ) + k = 1 m ( Q ( x 0 ) - Q ( z k ) ) + k j ( ϵ | y k - y j | ) N + 2 s
   + k j ( ϵ | z k - z j | ) N + 2 s + k = 1 m j = 1 l ( ϵ | y j - z k | ) ( p - 1 ) ( N + 2 s ) ) .

Proof.

Using assumption H3, Lemma 2.1 and the Hölder inequality, we deduce that

| N ( P ( ϵ x ) - P ( x 0 ) ) U ϵ , μ 1 , 𝐲 φ d x | = | k = 1 l N ( P ( ϵ x ) - P ( y k ) + P ( y k ) - P ( x 0 ) ) u ϵ , μ 1 , y k φ |
C k = 1 l N ( ( P ( ϵ x ) - P ( y k ) ) 2 u ϵ , μ 1 , y k 2 ) 1 2 φ s , ϵ , P + C k = 1 l ( P ( x 0 ) - P ( y k ) ) φ s , ϵ , P
C ( ϵ θ + k = 1 l ( P ( x 0 ) - P ( y k ) ) ) φ s , ϵ , P ,

Similarly,

| N ( Q ( ϵ x ) - Q ( x 0 ) ) V ϵ , μ 2 , 𝐳 ψ d x | C ( k = 1 m ( Q ( x 0 ) - Q ( z k ) ) + ϵ θ ) ψ s , ϵ , Q .

Since it follows from [22, (3.18), (3.19)] that

| N U ϵ , μ 1 , 𝐲 ( x ) p v d x - j = 1 m N u ϵ , μ 1 , y j p v d x | { C k j N | u ϵ , μ 1 , y k | p / 2 | u ϵ , μ 1 , y j | p / 2 | v | 𝑑 x , if 1 < p 2 , C k j N | u ϵ , μ 1 , y k | p - 1 | u ϵ , μ 1 , y j | | v | 𝑑 x , if p > 2 ,

we get

| N ( U ϵ , μ 1 , 𝐲 2 p - 1 - j = 1 l u ϵ , μ 1 , y j 2 p - 1 ) φ d x |
   C k j N | u ϵ , μ 1 , y j | 2 p - 2 | u ϵ , μ 1 , y k | | φ | 𝑑 x
   C k j ( N | u ϵ , μ 1 , y j | 4 p - 4 | u ϵ , μ 1 , y k | 2 𝑑 x ) 1 2 φ s , ϵ , P
   C k j ( | x | λ 1 1 / ( 2 s ) | y k - y j | / ( 2 ϵ ) w 4 p - 4 w 2 ( x - λ 1 1 2 s y k - y j ϵ ) 𝑑 x ) 1 2 φ s , ϵ , P
      + C k j ( | x | λ 1 1 / ( 2 s ) | y k - y j | / ( 2 ϵ ) ( ϵ | y k - y j | ) ( 4 p - 4 ) ( N + 2 s ) w 2 ( x - λ 1 1 2 s y k - y j ϵ ) 𝑑 x ) 1 2 φ s , ϵ , P
   C k j ( ( ϵ | y k - y j | ) 2 ( N + 2 s ) N w 4 p - 4 𝑑 x + ( ϵ | y k - y j | ) ( 4 p - 4 ) ( N + 2 s ) N w 2 𝑑 x ) 1 2 φ s , ϵ , P
   C k j ( ϵ | y k - y j | ) N + 2 s φ s , ϵ , P .

Similarly,

| N ( V ϵ , μ 2 , 𝐳 2 p - 1 - j = 1 m v ϵ , μ 2 , z j 2 p - 1 ) ψ d x | C k j ( ϵ | z k - z j | ) N + 2 s ψ s , ϵ , Q .

We also have

| N V ϵ , μ 2 , 𝐳 p U ϵ , μ 1 , 𝐲 p - 1 φ d x |
   C k = 1 m j = 1 l N | v ϵ , μ 2 , z k | p | u ϵ , μ 1 , y j | p - 1 | φ | 𝑑 x
   C k = 1 m j = 1 l ( N w λ 1 , y j , ϵ 2 p - 2 w λ 2 , z k , ϵ 2 p 𝑑 x ) 1 2 φ s , ϵ , P
   C k = 1 m j = 1 l ( | x | λ 1 1 / ( 2 s ) | y j - z k | / ( 2 ϵ ) w 2 p - 2 w 2 p ( ( λ 2 λ 1 ) 1 2 s x + λ 2 1 2 s y j - z k ϵ ) d x
      + | x | λ 1 1 / ( 2 s ) | y j - z k | / ( 2 ϵ ) ( ϵ | y j - z k | ) ( 2 p - 2 ) ( N + 2 s ) w 2 p ( ( λ 2 λ 1 ) 1 2 s x + λ 2 1 2 s y j - z k ϵ ) d x ) 1 2 φ s , ϵ , P
   C k = 1 m j = 1 l ( ( ϵ | y j - z k | ) 2 p ( N + 2 s ) N w 2 p - 2 𝑑 x + ( ϵ | y j - z k | ) ( 2 p - 2 ) ( N + 2 s ) N w 2 p 𝑑 x ) 1 2 φ s , ϵ , P
   C k = 1 m j = 1 l ( ϵ | y j - z k | ) ( p - 1 ) ( N + 2 s ) φ s , ϵ , P ,

Similarly,

| N U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p - 1 ψ d x | C k = 1 m j = 1 l ( ϵ | y j - z k | ) ( p - 1 ) ( N + 2 s ) ψ s , ϵ , Q .

Hence, combining all the estimates above, we get

f ϵ , 𝐲 , 𝐳 s , ϵ C ( ϵ θ + k = 1 l ( P ( x 0 ) - P ( y k ) ) + k = 1 m ( Q ( x 0 ) - Q ( z k ) ) + k j ( ϵ | y k - y j | ) N + 2 s
   + k j ( ϵ | z k - z j | ) N + 2 s + k = 1 m j = 1 l ( ϵ | y j - z k | ) ( p - 1 ) ( N + 2 s ) ) .

4 Proof of Theorem 1.1

Proof of Theorem 1.1.

Let (φ(𝐲,𝐳),ψ(𝐲,𝐳)) be the map obtained in Proposition 3.3. Define

( 𝐲 , 𝐳 ) = I ϵ ( U ϵ , μ 1 , 𝐲 + φ ( 𝐲 , 𝐳 ) , V ϵ , μ 2 , 𝐳 + ψ ( 𝐲 , 𝐳 ) ) for all ( 𝐲 , 𝐳 ) D ϵ , δ l , m .

It is well known that if (𝐲,𝐳) is a critical point of (𝐲,𝐳), then (Uϵ,μ1,𝐲+φ(𝐲,𝐳), Vϵ,μ2,𝐳+ψ(𝐲,𝐳)) is a solution of (1.4) (see [7]). As a consequence, in order to complete the proof of Theorem 1.1, we only need to prove that (𝐲,𝐳) has a critical point in Dϵ,δl,m.

By Proposition 3.3 and Lemma A.1, we have

( 𝐲 , 𝐳 ) = I ϵ ( U ϵ , μ 1 , 𝐲 + φ ( 𝐲 , 𝐳 ) , V ϵ , μ 2 , 𝐳 + ψ ( 𝐲 , 𝐳 ) )
= I ϵ ( U ϵ , μ 1 , 𝐲 , V ϵ , μ 2 , 𝐳 ) + f ϵ , 𝐲 , 𝐳 ( φ ( 𝐲 , 𝐳 ) , ψ ( 𝐲 , 𝐳 ) ) + 1 2 φ ( 𝐲 , 𝐳 ) , ψ ( 𝐲 , 𝐳 ) + R ϵ , 𝐲 , 𝐳 ( φ ( 𝐲 , 𝐳 ) , ψ ( 𝐲 , 𝐳 ) )
= I ϵ ( U ϵ , μ 1 , 𝐲 , V ϵ , μ 2 , 𝐳 ) + O ( f ϵ , 𝐲 , 𝐳 s , ϵ ( φ ( 𝐲 , 𝐳 ) , ψ ( 𝐲 , 𝐳 ) ) s , ϵ + ( φ ( 𝐲 , 𝐳 ) , ψ ( 𝐲 , 𝐳 ) ) s , ϵ 2 )
= ( 1 2 - 1 2 p ) l μ 1 λ 1 - N 2 s ( λ 1 μ 1 ) 2 p 2 ( p - 1 ) N w 2 p 𝑑 x + ( 1 2 - 1 2 p ) m μ 2 λ 2 - N 2 s ( λ 2 μ 2 ) 2 p 2 ( p - 1 ) N w 2 p 𝑑 x
   - 1 2 p μ 1 C 3 k j ( ϵ | y j - y k | ) N + 2 s - 1 2 p μ 2 C 4 k j ( ϵ | z j - z k | ) N + 2 s - k = 1 m C 2 ( Q ( x 0 ) - Q ( z k ) )
   - k = 1 l C 1 ( P ( x 0 ) - P ( y k ) ) - β O ( k = 1 m j = 1 l ( ϵ | y j - z k | ) p ( N + 2 s ) ) + O ( k j ( ϵ | y k - y j | ) N + 2 s )
   + O ( k j ( ϵ | z k - z j | ) N + 2 s ) + O ( ϵ θ )
   + O ( k = 1 l ( P ( x 0 ) - P ( y k ) ) 2 + k = 1 m ( Q ( x 0 ) - Q ( z k ) ) 2 + k = 1 m j = 1 l ( ϵ | y j - z k | ) 2 ( p - 1 ) ( N + 2 s ) ) .

Let (𝐲ϵ,𝐳ϵ)Dϵ,δl,m be any point and define

( 𝐲 ϵ , 𝐳 ϵ ) = max { ( 𝐲 , 𝐳 ) : ( 𝐲 , 𝐳 ) D ϵ , δ l , m } .

Now we show that (𝐲ϵ,𝐳ϵ) for small ϵ is an interior point of Dϵ,δl,m, and hence a critical point of .

Denote

y ¯ ϵ k = x 0 + L ϵ 3 4 e k , k = 1 , 2 , , l ,
z ¯ ϵ j = x 0 + L ϵ 3 4 e ^ j , j = 1 , 2 , , m ,

where L>0, 𝐲¯ϵ=(y¯ϵ1,,y¯ϵl), 𝐳¯ϵ=(z¯ϵ1,,z¯ϵm), e1,,el, e^1,,e^m are unit vectors in N and not equal mutually. Then for all a,b(y¯ϵ1,,y¯ϵl,z¯ϵ1,,z¯ϵm), ab, we have a,bB¯δ(x0),|a-b|ϵ45.

Thus (𝐲¯ϵ,𝐳¯ϵ)Dϵ,δl,m for ϵ small enough, and we get

( 𝐲 ϵ , 𝐳 ϵ ) ( 𝐲 ¯ ϵ , 𝐳 ¯ ϵ )
( 1 2 - 1 2 p ) l μ 1 λ 1 - N 2 s ( λ 1 μ 1 ) 2 p 2 ( p - 1 ) N w 2 p 𝑑 x + ( 1 2 - 1 2 p ) m μ 2 λ 2 - N 2 s ( λ 2 μ 2 ) 2 p 2 ( p - 1 ) N w 2 p 𝑑 x - C ϵ 3 4 .

As a result, we find

1 2 p μ 1 C 3 k j ( ϵ | y j - y k | ) N + 2 s + 1 2 p μ 2 C 4 k j ( ϵ | z j - z k | ) N + 2 s + k = 1 m C 2 ( Q ( x 0 ) - Q ( z k ) )
   + k = 1 l C 1 ( P ( x 0 ) - P ( y k ) ) + β O ( k = 1 m j = 1 l ( ϵ | y j - z k | ) p ( N + 2 s ) ) + O ( k j ( ϵ | y k - y j | ) N + 2 s )
   + O ( k j ( ϵ | z k - z j | ) N + 2 s )
C ϵ 3 4 ,

which implies that there exists β*>0 such that, for β(0,β*),

P ( x 0 ) - P ( y k ) C ϵ 3 4 , k = 1 , , l ,
Q ( x 0 ) - Q ( z j ) C ϵ 3 4 , j = 1 , , m ,

| y k - y j | > ϵ 4 5 , k = 1 , , l , j = 1 , , l ,
| z k - z j | > ϵ 4 5 , k = 1 , , m , j = 1 , , m ,
| y k - z j | > ϵ 4 5 , k = 1 , , l , j = 1 , , m .

Thus, (𝐲ϵ,𝐳ϵ) is an interior point of Dϵ,δl,m, and hence a critical point of for ϵ sufficiently small.

Now we prove that uϵ and vϵ are positive.

From Iϵ(uϵ,vϵ),(uϵ-,0)s,ϵ=0 and (φϵ,ψϵ)s,ϵ0, we have

u ϵ - s , ϵ , P 2 = μ 1 N | u ϵ - | 2 p 𝑑 x + β N | v ϵ | p | u ϵ - | p 𝑑 x o ( 1 ) u ϵ - s , ϵ , P 2 .

Hence, uϵ-=0. Using the strong maximum principle (see [8]), we can conclude that uϵ>0. Similarly, vϵ>0. ∎

Award Identifier / Grant number: 11301204

Funding statement: The author is supported by the NSFC through grant 11301204.

A Some Technical Estimates

In this section, we mainly estimate Iϵ(Uϵ,μ1,𝐲,Vϵ,μ2,𝐳).

Lemma A.1

We have

I ϵ ( U ϵ , μ 1 , 𝐲 , V ϵ , μ 2 , 𝐳 ) = ( 1 2 - 1 2 p ) l μ 1 λ 1 - N 2 s ( λ 1 μ 1 ) 2 p 2 ( p - 1 ) N w 2 p 𝑑 x + ( 1 2 - 1 2 p ) m μ 2 λ 2 - N 2 s ( λ 2 μ 2 ) 2 p 2 ( p - 1 ) N w 2 p 𝑑 x
   - 1 2 p μ 1 C 3 k j ( ϵ | y j - y k | ) N + 2 s - 1 2 p μ 2 C 4 k j ( ϵ | z j - z k | ) N + 2 s
   - k = 1 m C 2 ( Q ( x 0 ) - Q ( z k ) ) - k = 1 l C 1 ( P ( x 0 ) - P ( y k ) ) - β O ( k = 1 m j = 1 l ( ϵ | y j - z k | ) p ( N + 2 s ) )
   + O ( k j ( ϵ | y k - y j | ) N + 2 s ) + O ( k j ( ϵ | z k - z j | ) N + 2 s ) + O ( ϵ θ ) ,

where C1,C2,C3,C4>0 are independent of ϵ.

Proof.

By a direct computation, we see

I ϵ ( U ϵ , μ 1 , 𝐲 , V ϵ , μ 2 , 𝐳 )
   = 1 2 U ϵ , μ 1 , 𝐲 , U ϵ , μ 1 , 𝐲 s + 1 2 N P ( ϵ x ) U ϵ , μ 1 , 𝐲 2 𝑑 x + 1 2 V ϵ , μ 2 , 𝐳 , V ϵ , μ 2 , 𝐳 s
      + 1 2 N Q ( ϵ x ) V ϵ , μ 2 , 𝐳 2 𝑑 x - 1 2 p N ( μ 1 U ϵ , μ 1 , 𝐲 2 p + μ 2 V ϵ , μ 2 , 𝐳 2 p ) 𝑑 x - β p N U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p 𝑑 x
   = ( 1 2 - 1 2 p ) k = 1 l N μ 1 | u ϵ , μ 1 , y k | 2 p 𝑑 x + ( 1 2 - 1 2 p ) k = 1 m N μ 2 | v ϵ , μ 2 , z k | 2 p 𝑑 x - β p N U ϵ , μ 1 , 𝐲 p V ϵ , μ 2 , 𝐳 p 𝑑 x
      + 1 2 N ( P ( ϵ x ) - P ( x 0 ) ) | U ϵ , μ 1 , 𝐲 | 2 𝑑 x + 1 2 N ( Q ( ϵ x ) - Q ( x 0 ) ) | V ϵ , μ 2 , 𝐳 | 2 𝑑 x
      - 1 2 p μ 1 N ( | U ϵ , μ 1 , 𝐲 | 2 p - k = 1 l | u ϵ , μ 1 , y k | 2 p - p k j | u ϵ , μ 1 , y k | 2 p - 1 u ϵ , μ 1 , y j ) 𝑑 x
      - 1 2 p μ 2 N ( | V ϵ , μ 2 , 𝐳 | 2 p - k = 1 m | v ϵ , μ 2 , z k | 2 p - p k j | v ϵ , μ 2 , z k | 2 p - 1 v ϵ , μ 2 , z j ) 𝑑 x .

Since

N ( P ( ϵ x ) - P ( x 0 ) ) | U ϵ , μ 1 , 𝐲 | 2 𝑑 x
   = k = 1 l N ( P ( ϵ x ) - P ( x 0 ) ) | u ϵ , μ 1 , y k | 2 𝑑 x + k j N ( P ( ϵ x ) - P ( x 0 ) ) u ϵ , μ 1 , y j u ϵ , μ 1 , y k 𝑑 x
   = k = 1 l N ( P ( ϵ x ) - P ( y k ) + P ( y k ) - P ( x 0 ) ) | u ϵ , μ 1 , y k | 2 𝑑 x
      + k j N ( P ( ϵ x ) - P ( y k ) + P ( y k ) - P ( x 0 ) ) u ϵ , μ 1 , y j u ϵ , μ 1 , y k 𝑑 x
   = - k = 1 l C 1 ( P ( x 0 ) - P ( y k ) ) + O ( ϵ θ ) + O ( k j ( ϵ | y k - y j | ) N + 2 s ) .

Similarly,

N ( Q ( ϵ x ) - Q ( x 0 ) ) | V ϵ , μ 2 , 𝐳 | 2 𝑑 x = - k = 1 m C 2 ( Q ( x 0 ) - Q ( z k ) ) + O ( ϵ θ ) + O ( k j ( ϵ | z k - z j | ) N + 2 s ) .

Also we have

| N V ϵ , μ 2 , 𝐳 p U ϵ , μ 1 , 𝐲 p d x | C k = 1 m j = 1 l N | v ϵ , μ 2 , z k | p | u ϵ , μ 1 , y j | p d x
C k = 1 m j = 1 l | x | λ 1 1 / ( 2 s ) | y j - z k | / ( 2 ϵ ) w p w p ( ( λ 2 λ 1 ) 1 2 s x + λ 2 1 2 s y j - z k ϵ ) 𝑑 x
   + C k = 1 m j = 1 l | x | λ 1 1 / ( 2 s ) | y j - z k | / ( 2 ϵ ) ( ϵ | y j - z k | ) p ( N + 2 s ) w p ( ( λ 2 λ 1 ) 1 2 s x + λ 2 1 2 s y j - z k ϵ ) 𝑑 x
C k = 1 m j = 1 l ( ϵ | y j - z k | ) p ( N + 2 s ) N w p 𝑑 x + C k = 1 m j = 1 l ( ϵ | y j - z k | ) p ( N + 2 s ) N w p 𝑑 x
C k = 1 m j = 1 l ( ϵ | y j - z k | ) p ( N + 2 s ) .

Using Lemma 3.2, we have

N ( | U ϵ , μ 1 , 𝐲 | 2 p - k = 1 l | u ϵ , μ 1 , y k | 2 p - p k j l | u ϵ , μ 1 , y k | 2 p - 1 u ϵ , μ 1 , y j ) 𝑑 x
   = N | u ϵ , μ 1 , y 1 + k = 2 l u ϵ , μ 1 , y k | 2 p 𝑑 x - N k = 1 l | u ϵ , μ 1 , y k | 2 p d x - p N k j l | u ϵ , μ 1 , y k | 2 p - 1 u ϵ , μ 1 , y j d x
   N | k = 2 l u ϵ , μ 1 , y k | 2 p 𝑑 x + 2 p N | u ϵ , μ 1 , y 1 | 2 p - 1 ( k = 2 l u ϵ , μ 1 , y k ) 𝑑 x + 2 p N u ϵ , μ 1 , y 1 ( k = 2 l u ϵ , μ 1 , y k ) 2 p - 1 𝑑 x
      + C N | u ϵ , μ 1 , y 1 | 2 p - 2 | k = 2 l u ϵ , μ 1 , y k | 2 𝑑 x + C N | u ϵ , μ 1 , y 1 | 2 | k = 2 l u ϵ , μ 1 , y k | 2 p - 2 𝑑 x
      - N k = 2 l | u ϵ , μ 1 , y k | 2 p d x - p N k j l | u ϵ , μ 1 , y k | 2 p - 1 u ϵ , μ 1 , y j d x
   N | k = 2 l u ϵ , μ 1 , y k | 2 p 𝑑 x + 2 p N | u ϵ , μ 1 , y 1 | 2 p - 1 ( k = 2 l u ϵ , μ 1 , y k ) 𝑑 x + 2 p N u ϵ , μ 1 , y 1 ( k = 2 l u ϵ , μ 1 , y k ) 2 p - 1 𝑑 x
      - N k = 2 l | u ϵ , μ 1 , y k | 2 p d x - p N k j l | u ϵ , μ 1 , y k | 2 p - 1 u ϵ , μ 1 , y j d x + O ( k = 2 l ( ϵ | y 1 - y k | ) 2 ( N + 2 s ) ) .

By repeated applications of Lemma 3.2, we obtain

N ( | U ϵ , μ 1 , 𝐲 | 2 p - k = 1 l | u ϵ , μ 1 , y k | 2 p - p k j l | u ϵ , μ 1 , y k | 2 p - 1 u ϵ , μ 1 , y j ) 𝑑 x
   = p N k j | u ϵ , μ 1 , y k | 2 p - 1 u ϵ , μ 1 , y j d x + 2 p N k = 1 l - 1 u ϵ , μ 1 , y k | j = k + 1 l u ϵ , μ 1 , y j | 2 p - 1 d x + O ( k j ( ϵ | y j - y k | ) 2 ( N + 2 s ) )
   = C 3 k j ( ϵ | y j - y k | ) N + 2 s + O ( k j ( ϵ | y j - y k | ) N + 2 s ) .

Similarly,

N ( | V ϵ , μ 2 , 𝐳 | 2 p - k = 1 m | v ϵ , μ 2 , z k | 2 p - p k j | v ϵ , μ 2 , z k | 2 p - 1 v ϵ , μ 2 , z j ) 𝑑 x
   = C 4 k j ( ϵ | z j - z k | ) N + 2 s + O ( k j ( ϵ | z j - z k | ) N + 2 s ) .

Hence, we get

I ϵ ( U ϵ , μ 1 , 𝐲 , V ϵ , μ 2 , 𝐳 ) = ( 1 2 - 1 2 p ) l μ 1 λ 1 - N 2 s ( λ 1 μ 1 ) 2 p 2 ( p - 1 ) N w 2 p 𝑑 x + ( 1 2 - 1 2 p ) m μ 2 λ 2 - N 2 s ( λ 2 μ 2 ) 2 p 2 ( p - 1 ) N w 2 p 𝑑 x
   - 1 2 p μ 1 C 3 k j ( ϵ | y j - y k | ) N + 2 s - 1 2 p μ 2 C 4 k j ( ϵ | z j - z k | ) N + 2 s - k = 1 m C 2 ( Q ( x 0 ) - Q ( z k ) )
   - k = 1 l C 1 ( P ( x 0 ) - P ( y k ) ) - β O ( k = 1 m j = 1 l ( ϵ | y j - z k | ) p ( N + 2 s ) ) + O ( k j ( ϵ | y k - y j | ) N + 2 s )
   + O ( k j ( ϵ | z k - z j | ) N + 2 s ) + O ( ϵ θ ) .

The author would like to thank the referees for their suggestions.

References

[1] Alves C., Local mountain pass for a class of elliptic system, J. Math. Anal. Appl. 335 (2007), 135–150. 10.1016/j.jmaa.2007.01.062Search in Google Scholar

[2] Ambrosetti A., Cerami G. and Ruiz D., Solitons of linearly coupled systems of semilinear non-autonomous equations on n, J. Funct. Anal. 254 (2008), 2816–2845. 10.1016/j.jfa.2007.11.013Search in Google Scholar

[3] Ambrosetti A., Colorado E. and Ruiz D., Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations, Calc. Var. Partial Differential Equations 30 (2007), 85–112. 10.1007/s00526-006-0079-0Search in Google Scholar

[4] Bartsch T. and Wang Z., Note on ground states of nonlinear Schrödinger systems, J. Partial Differ. Equ. 19 (2006), 200–207. Search in Google Scholar

[5] Bartsch T., Wang Z. and Wei J., Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl. 2 (2007), 353–367. 10.1007/s11784-007-0033-6Search in Google Scholar

[6] Burt E., Cornell E., Ghrist R., Myatt C. and Wieman C., Production of two overlapping Bose-Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78 (1997), 586–589. 10.1103/PhysRevLett.78.586Search in Google Scholar

[7] Cabré X. and Tan J., Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), 2052–2093. 10.1016/j.aim.2010.01.025Search in Google Scholar

[8] Capella A., Dávila J., Dupaigne L. and Sire Y., Regularity of radial extremal solutions for some nonlocal semilinear equations, Comm. Partial Differential Equations 36 (2011), 1353–1384. 10.1080/03605302.2011.562954Search in Google Scholar

[9] Chen G. and Zheng Y., Concentration phenomenon for fractionsl nonlinear Schrödinger equations, Commun. Pure Appl. Anal. 13 (2014), 2359–2376. 10.3934/cpaa.2014.13.2359Search in Google Scholar

[10] Chen X., Lin T. and Wei J., Blow up and solitary wave solutions with ring profiles of two-component nonlinear Schrödinger systems, Phys. D 239 (2010), 613–626. 10.1016/j.physd.2010.01.017Search in Google Scholar

[11] Dávila J., del Pino M. and Wei J., Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations 256 (2014), 858–892. 10.1016/j.jde.2013.10.006Search in Google Scholar

[12] Di Nezza E., Palatucci G. and Valdinoci E., Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573. 10.1016/j.bulsci.2011.12.004Search in Google Scholar

[13] Felmer P., Quass A. and Tan J., Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), 1237–1262. 10.1017/S0308210511000746Search in Google Scholar

[14] Frank R. L. and Lenzmann E., Uniqueness of non-linear ground states for fractional Laplacians in , Acta Math. 210 (2013), 261–318. 10.1007/s11511-013-0095-9Search in Google Scholar

[15] Frank R. L., Lenzmann E. and Silvestre L., Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math. (2015), 10.1002/cpa.21591. 10.1002/cpa.21591Search in Google Scholar

[16] Kim S., Kwon O. and Lee Y., Solutions with a prescribed number of zeros for nonlinear Schrödinger systems, Nonlinear Anal. 86 (2013), 74–88. 10.1016/j.na.2013.03.009Search in Google Scholar

[17] Kwong M. K., Uniqueness of the positive solution of Δu-u+up=0 in n, Arch. Ration. Mech. Anal. 105 (1989), 243–266. 10.1007/BF00251502Search in Google Scholar

[18] Lin T. and Wei J., Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials, J. Differential Equations 229 (2006), 538–569. 10.1016/j.jde.2005.12.011Search in Google Scholar

[19] Liu Z. and Wang Z., Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Stud. 10 (2010), 175–193. 10.1515/ans-2010-0109Search in Google Scholar

[20] Long W. and Peng S., Segregated vector solutions for a class of Bose–Einstein systems, J. Differential Equations 257 (2014), 207–230. 10.1016/j.jde.2014.03.019Search in Google Scholar

[21] Long W., Peng S. and Yang J., Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations, Discrete Contin. Dyn. Syst. 36 (2016), no. 2, 917–939. 10.3934/dcds.2016.36.917Search in Google Scholar

[22] Noussair E. S. and Yan S., On positive multipeak solutions of a nonlinear elliptic problem, J. Lond. Math. Soc. (2) 62 (2002), 213–227. 10.1112/S002461070000898XSearch in Google Scholar

[23] Peng S. and Wang Z., Segregated and synchronized vector solutions for nonlinear Schrödinger systems, Arch. Ration. Mech. Anal. 208 (2013), 305–339. 10.1007/s00205-012-0598-0Search in Google Scholar

[24] Pomponio A., Coupled nonlinear Schrödinger systems with potentials, J. Differential Equations 227 (2006), 258–281. 10.1016/j.jde.2005.09.002Search in Google Scholar

[25] Secchi S., Ground state solutions for nonlinear fractional Schrödinger equations in N, J. Math. Phys. 54 (2013), Article ID 031501. 10.1063/1.4793990Search in Google Scholar

[26] Tan J., The Brezis–Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations 42 (2011), 21–41. 10.1007/s00526-010-0378-3Search in Google Scholar

[27] Wan Y. and Ávila A. I., Multiple solutions of a coupled nonlinear Schrödinger system, J. Math. Anal. Appl. 334 (2007), 1308–1325. 10.1016/j.jmaa.2007.01.024Search in Google Scholar

[28] Wei J. and Yan S., Infinitely many solutions for the prescribed scalar curvature problem on 𝕊N, J. Funct. Anal. 258 (2010), 3048–3081. 10.1016/j.jfa.2009.12.008Search in Google Scholar

[29] Wei J. and Yan S., Infinitely many positive solutions for the nonlinear Schrödinger equations in N, Calc. Var. Partial Differential Equations 37 (2010), 423–439. 10.1007/s00526-009-0270-1Search in Google Scholar

Received: 2015-03-28
Revised: 2015-08-10
Accepted: 2015-08-12
Published Online: 2016-03-19
Published in Print: 2016-05-01

© 2016 by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ans-2015-5019/html
Scroll to top button