Chapter
Licensed
Unlicensed
Requires Authentication
6. Homomorphisms
-
Robert Geroch
You are currently not able to access this content.
You are currently not able to access this content.
Chapters in this book
- Frontmatter i
- Contents v
- 1. Introduction 1
- 2. Categories 3
- 3. The Category of Groups 16
- 4. Subgroups 24
- 5. Normal Subgroups 29
- 6. Homomorphisms 32
- 7. Direct Products and Sums of Groups 35
- 8. Relations 39
- 9. The Category of Vector Spaces 44
- 10. Subspaces 53
- 11. Linear Mappings; Direct Products and Sums 58
- 12. From Real to Complex Vector Spaces and Back 62
- 13. Duals 65
- 14. Multilinear Mappings; Tensor Products 71
- 15. Example: Minkowski Vector Space 79
- 16. Example: The Lorentz Group 87
- 17. Functors 90
- 18. The Category of Associative Algebras 97
- 19. The Category of Lie Algebras 104
- 20. Example: The Algebra of Observables 111
- 21. Example: Fock Vector Space 114
- 22. Representations: General Theory 120
- 23. Representations on Vector Spaces 125
- 24. The Algebraic Categories: Summary 132
- 25. Subsets and Mappings 134
- 26. Topological Spaces 136
- 27. Continuous Mappings 147
- 28. The Category of Topological Spaces 154
- 29. Nets 160
- 30. Compactness 165
- 31. The Compact-Open Topology 172
- 32. Connectedness 177
- 33. Example: Dynamical Systems 183
- 34. Homotopy 188
- 35. Homology 199
- 36. Homology: Relation to Homotopy 211
- 37. The Homology Functors 214
- 38. Uniform Spaces 217
- 39. The Completion of a Uniform Space 225
- 40. Topological Groups 234
- 41. Topological Vector Spaces 240
- 42. Categories: Summary 248
- 43. Measure Spaces 249
- 44. Constructing Measure Spaces 257
- 45. Measurable Functions 259
- 46. Integrals 262
- 47. Distributions 270
- 48. Hilbert Spaces 277
- 49. Bounded Operators 285
- 50. The Spectrum of a Bounded Operator 293
- 51. The Spectral Theorem: Finite-dimensional Case 302
- 52. Continuous Functions of a Hermitian Operator 306
- 53. Other Functions of a Hermitian Operator 311
- 54. The Spectral Theorem 319
- 55. Operators (Not Necessarily Bounded) 324
- 56. Self-Adjoint Operators 329
- Index of Defined Terms 343
Chapters in this book
- Frontmatter i
- Contents v
- 1. Introduction 1
- 2. Categories 3
- 3. The Category of Groups 16
- 4. Subgroups 24
- 5. Normal Subgroups 29
- 6. Homomorphisms 32
- 7. Direct Products and Sums of Groups 35
- 8. Relations 39
- 9. The Category of Vector Spaces 44
- 10. Subspaces 53
- 11. Linear Mappings; Direct Products and Sums 58
- 12. From Real to Complex Vector Spaces and Back 62
- 13. Duals 65
- 14. Multilinear Mappings; Tensor Products 71
- 15. Example: Minkowski Vector Space 79
- 16. Example: The Lorentz Group 87
- 17. Functors 90
- 18. The Category of Associative Algebras 97
- 19. The Category of Lie Algebras 104
- 20. Example: The Algebra of Observables 111
- 21. Example: Fock Vector Space 114
- 22. Representations: General Theory 120
- 23. Representations on Vector Spaces 125
- 24. The Algebraic Categories: Summary 132
- 25. Subsets and Mappings 134
- 26. Topological Spaces 136
- 27. Continuous Mappings 147
- 28. The Category of Topological Spaces 154
- 29. Nets 160
- 30. Compactness 165
- 31. The Compact-Open Topology 172
- 32. Connectedness 177
- 33. Example: Dynamical Systems 183
- 34. Homotopy 188
- 35. Homology 199
- 36. Homology: Relation to Homotopy 211
- 37. The Homology Functors 214
- 38. Uniform Spaces 217
- 39. The Completion of a Uniform Space 225
- 40. Topological Groups 234
- 41. Topological Vector Spaces 240
- 42. Categories: Summary 248
- 43. Measure Spaces 249
- 44. Constructing Measure Spaces 257
- 45. Measurable Functions 259
- 46. Integrals 262
- 47. Distributions 270
- 48. Hilbert Spaces 277
- 49. Bounded Operators 285
- 50. The Spectrum of a Bounded Operator 293
- 51. The Spectral Theorem: Finite-dimensional Case 302
- 52. Continuous Functions of a Hermitian Operator 306
- 53. Other Functions of a Hermitian Operator 311
- 54. The Spectral Theorem 319
- 55. Operators (Not Necessarily Bounded) 324
- 56. Self-Adjoint Operators 329
- Index of Defined Terms 343