Startseite Creep in ODS copper reinforced with tungsten short fibres – an ODS copper-matrix/tungsten-short-fibre composite
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Creep in ODS copper reinforced with tungsten short fibres – an ODS copper-matrix/tungsten-short-fibre composite

  • Josef Čadek , Květa Kuchařová EMAIL logo und Shijie Zhu
Veröffentlicht/Copyright: 28. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Creep in copper dispersion-strengthened with fine alumina particles and reinforced with tungsten short fibres is investigated at three temperatures ranging from 923 to 1023 K. It is shown that creep is associated with a true threshold stress decreasing with increasing temperature more strongly than the shear modulus of copper. The true threshold stress in the composite is higher than that in the composite matrix by a factor K, by which the flow stress in the matrix is reduced due to the load transfer. The minimum creep strain rate is found to be lattice diffusion controlled and to depend on the fifth power of applied stress. The values of the apparent activation energy of creep are higher than that of the activation enthalpy of lattice self-diffusion in the composite matrix, which is fully explained in terms of the temperature dependence of the true threshold stress. The values of the apparent stress exponents are higher than the value of the true stress exponent since the true threshold stress is independent of the applied stress.


Dr. K. Kuchařová, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižrkova22, 616 62 Brno, Czech Republic, Tel.: +42 532 290 413, Fax: +42 541 218 657

Funding statement: This work was financially supported by the Grant Agency of the Academy of Sciences of the Czech Republic (Grant No. S 204 1001). The authors thank Dr. Alena Orlová for comments on the manuscript and Ms. Eva Žáková for assistance in manuscript preparation

References

[1] J. Rösler, M. Bäker: Acta Mater. 48 (2000) 3553.10.1016/S1359-6454(00)00109-9Suche in Google Scholar

[2] J. Rösler, E. Arzt: Acta Metall. Mater. 38 (1990) 671.10.1016/0956-7151(90)90223-4Suche in Google Scholar

[3] J. Cadek, S.J. Zhu, K. Milička: Mater. Sci. Eng. A 252 (1998) 1.10.1016/S0921-5093(98)00672-8Suche in Google Scholar

[4] K. Kuchařová, S.J. Zhu, J. Čadek: Mater. Sci. Eng. A 348 (2003) 170.10.1016/S0921-5093(02)00631-7Suche in Google Scholar

[5] S.J. Zhu, K. Kuchařová, J. Čadek: Metall. Mater. Trans. A31 (2000) 2229.10.1007/s11661-000-0140-0Suche in Google Scholar

[6] Z.Y. Ma, S.J. Tjong: Mater. Sci. Eng. A278 (2000) 5.10.1016/S0921-5093(99)00613-9Suche in Google Scholar

[7] K. Kuchařová, S.J. Zhu, J. Čadek: Mater. Sci. Eng. A 355 (2003) 267.10.1016/S0921-5093(03)00081-9Suche in Google Scholar

[8] F.A. Mohamed, K.-T. Park, E.J. Lavernia: Mater. Sci. Eng. A 150 (1992) 21.10.1016/0921-5093(90)90004-MSuche in Google Scholar

[9] J. Čadek, H. Oikawa, V. Šustek: Mater. Sci. Eng. A190 (1995) 9.10.1016/0921-5093(94)09605-VSuche in Google Scholar

[10] H.J. Frost, M.F. Ashby: Deformation Mechanism Maps–the Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford (1982) 20.Suche in Google Scholar

Received: 2003-10-16
Accepted: 2003-12-16
Published Online: 2021-12-28

© 2004 Carl Hanser Verlag, München

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2004-0036/html?lang=de
Button zum nach oben scrollen