Startseite Computer simulation of the long-range diffusional transformation based on the postulated principle of maximum dissipation rate of Gibbs energy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Computer simulation of the long-range diffusional transformation based on the postulated principle of maximum dissipation rate of Gibbs energy

  • Anders Salwén
Veröffentlicht/Copyright: 3. Januar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The long-range diffusional phase transformation in multicomponent, multi-phase systems has been modelled based on the postulated principle of maximum dissipation rate of Gibbs energy. Use of the principle eliminates the need of a separate model for the interface velocity or assumptions about the interface composition. The principle is demonstrated for the austenite-to-ferrite transformation during cooling in an Fe-3% Cr-0.2% C alloy.


Dr. Anders Salwén Swedish Institute for Metals Research Drottning Kristinas väg 48, S-11428 Stockholm, Sweden Tel.: +46 8440 4848 Fax: +46 8440 4535

References

1 Zackay, V.F.; Aaronson, H.I. (eds.): Decomposition of Austenite by Diffusional Processes, Interscience Publishers, John Wiley & Sons, New York/London (1962).Suche in Google Scholar

2 Tanzilli, R.A.; Heckel, R.W.: Trans. TMS AIME 242 (1968) 2313.Suche in Google Scholar

3 Coates, D. E.: Met. Trans. 4 (1973) 2313.10.1007/BF02669370Suche in Google Scholar

4 Randich, E.; Goldstein, J.L: Met. Trans. A 6 (1975) 1553.10.1007/BF02641967Suche in Google Scholar

5 Andersson, J.O.; Höglund, L.; Jönsson, B.;Ågren, J., in: G.R. Purdy (ed.), Fundamentals and Applications of Ternary Diffusion, Pergamon Press, New York (1990) 153.10.1016/B978-0-08-040412-7.50023-2Suche in Google Scholar

6 Kozeschnik, E.: Met. Trans. A 30 (1999) 2575.10.1007/s11661-999-0296-1Suche in Google Scholar

7 Olson, G.B.; Bhadeshia, H.K.D.H.; Cohen, M.: Acta Metall. 37 (1989) 381.10.1016/0001-6160(89)90222-8Suche in Google Scholar

8 Salwén, A.: Met. Trans. A 24 (1993) 1507.10.1007/BF02646591Suche in Google Scholar

9 Johnson, W.C.: Met. Trans. A 29 (1998) 2021.10.1007/s11661-998-0028-ySuche in Google Scholar

10 Zener, C.: Trans. AIME 167 (1946) 550.Suche in Google Scholar

11 Cahn, J.W.: Acta Metall. 7 (1959) 18.10.1016/0001-6160(59)90164-6Suche in Google Scholar

12 Puls, M.P.; Kirkaldy, J.S.: Met. Trans. 3 (1972) 2777.10.1007/BF02652844Suche in Google Scholar

13 Solorzano, I.G.; Purdy, G.R.: Met. Trans. A 15 (1984) 1055.10.1007/BF02644697Suche in Google Scholar

14 Bögel, A.; Gust, W.: Z. Metallkd. 79 (1988) 296.Suche in Google Scholar

15 Bögel, A.; Gust, W.; Predel, B.: Z. Metallkd. 83 (1992) 11.Suche in Google Scholar

16 Hillert, M.: Acta Mater. 47 (1999) 4481.10.1016/S1359-6454(99)00336-5Suche in Google Scholar

17 Murray, D.; Landis, F.: Trans. ASME 81 (1959) 106.10.1115/1.4008149Suche in Google Scholar

18 Andersson, J. O.: Met. Trans. A19 (1988) 627.10.1007/BF02649276Suche in Google Scholar

19 Jönsson, B.: Z. Metallkd. 85 (1994) 498.Suche in Google Scholar

20 Jönsson, B.: Z. Metallkd. 85 (1994) 502.Suche in Google Scholar

21 Jönsson, B.: Z. Metallkd. 86 (1995) 686.Suche in Google Scholar

22 DeHoff, R.T.: Thermodynamics in Materials Science, McGraw-Hill, New York (1993).Suche in Google Scholar

Received: 2002-02-01
Published Online: 2022-01-03

© 2002 Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-2002-0086/pdf
Button zum nach oben scrollen