Adsorption Studies of Water on Copper, Nickel, and Iron: Assessment of the Polarization Model
-
Sungkyu Lee
and Roger W. Staehle
Abstract
In the atmospheric corrosion of copper, nickel, and iron, the adsorption of water affects the corrosion rates. Knowledge of water adsorption and metal oxyhydroxide formation is important in understanding the atmospheric corrosion process. The purposes of the present research were (i) to measure the adsorption of water on metal surfaces as a function of temperature and relative humidity (RH) and (ii) to assess Bradley’s polarization model of adsorption. In the present research, the quartz-crystal microbalance (QCM) technique was used to measure the mass changes of copper, nickel, and iron at 0 to 100 % relative humidity and 7 to 90 °C under nitrogen and air environments. Less water was adsorbed on copper, nickel, and iron which form oxides than on gold. The amount of water adsorption was similar on copper, nickel, and iron under N2 and air carrier gases. Functional relationship was first proposed as a way to include dipole/induced dipole interactions between the adsorbents and water layers.
Funding statement: The present research was supported by the Department of Energy under a TRW contract No. DX 1456KP2L. Professor W.H. Smyrl (Department of Chemical Engineering and Materials Science, University of Minnesota) helped the authors in every aspect of the research and he is gratefully acknowledged.
Literature
1 Vernon, W.H.J.: Chem. and Ind. 62 (1943) 314.Search in Google Scholar
2 Vernon, W.H.J.: Sci. Instrum. 22 (1945) 226.10.1088/0950-7671/22/12/302Search in Google Scholar
3 Leidheiser, Jr, H.: The Corrosion of Copper, Tin, and Their Alloys, John Wiley & Sons, Inc., New York (1971) 3.Search in Google Scholar
4 Phipps, P.B.P.; Rice, D.W: The role of water in atmospheric corrosion, in: Brubaker, G.R.; Phipps, P.B.P. (ed.), Corrosion Chemistry, ACS Symposium Series 89, American Chemical Society, Washington D.C. (1979) 235.10.1021/bk-1979-0089.ch008Search in Google Scholar
5 Thomas, III, J.H.; Sharma, S.P.: J. Vac. Sci. Technol. 13 (1976) 549.10.1116/1.568948Search in Google Scholar
6 Sharma, S.P.; Thomas, III, J.H.: J. Vac. Sci. Technol. 14 (1977) 825.10.1116/1.569277Search in Google Scholar
7 Dante, J.F.; Kelly, R.G.: J. Electrochem. Soc. 140 (1993) 1890.10.1149/1.2220734Search in Google Scholar
8 Lee, W.-Y.; Eldridge, J.: J. Electrochem. Soc. 124 (1977) 1747.10.1149/1.2133149Search in Google Scholar
9 Rydén, J.; Hjörvarsson, B.; Ericsson, T.; Karlsson, E.; Krozer, A.; Kasemo, B.: J. Less Common Met. 152 (1989) 295.10.1016/0022-5088(89)90097-0Search in Google Scholar
10 Krozer, A.; Kasemo, B.: J. Less Common Met. 160 (1990) 323.10.1016/0022-5088(90)90391-VSearch in Google Scholar
11 Sharma, S.P.: J. Vac. Sci. Technol. 16 (1979) 1557.10.1116/1.570247Search in Google Scholar
12 Seo, M.; Sawamura, I.; Grasjo, L.; Haga, Y; Sato, N.: J. Soc. of Mater. Sci. Japan 39 (1990) 357.10.2472/jsms.39.357Search in Google Scholar
13 Rice, D.W.; Phipps, P.B.P.; Tremoureux, R.: J. Electrochem. Soc. 127 (1980) 563.10.1149/1.2129712Search in Google Scholar
14 Skerry, B.S.; Johnson, J.B.; Wood, G.C.: Corros. Sci. 28 (1988) 657.10.1016/0010-938X(88)90048-0Search in Google Scholar
15 Skerry, B.S.; Wood, J.C.; Johnson, J.B.; Wood, G.C.: Corros. Sci. 28 (1988) 697.10.1016/0010-938X(88)90049-2Search in Google Scholar
16 Skerry, B.S.; Johnson, J.B.; Wood, G.C.: Corros. Sci. 28 (1988) 721.10.1016/0010-938X(88)90050-9Search in Google Scholar
17 Eichhorn, K.-J.; Forker, W.: Corros. Sci. 28 (1988) 745.10.1016/0010-938X(88)90114-XSearch in Google Scholar
18 Lee, S.; Staehle, R.W.: Z. Metallkunde (1997) in press.Search in Google Scholar
19 C. Lu; A.W. Czanderna (eds.): Applications of piezoelectric quartz crystal microbalances, Elsevier, Amsterdam, The Netherlands (1984).Search in Google Scholar
20 Smyrl, W.H.; Lien, M.: The electrochemical QCM (quartz-crystal microbalance) method, in: T. Osaka (ed.), New trends and approaches in electrochemical technology, Kodansha, Tokyo, Japan (1993) 77.Search in Google Scholar
21 Bradley, R.S.: J. Chem. Soc., Part II (1936) 1799.10.1039/jr9360001799Search in Google Scholar
22 Suhrmann, R.; Heras, J.M.; Heras, L.V. de; Wedler, G.: Ber. Bunsenges. Physik, Chem., 72 (1968) 854.Search in Google Scholar
23 Texter, J.; Klier, K.; Zettlemoyer, A.C.: Prog. in Surface and Membrane Sci. 12 (1978) 327.10.1016/B978-0-12-571812-7.50009-7Search in Google Scholar
24 McCafferty, E.; Zettlemoyer, A.C.: Discuss. Faraday Soc. 52 (1971) 239.10.1039/DF9715200239Search in Google Scholar
25 Bange, K.; Grider, D.E.; Madey, T.E.; Sass, J.K.: Surf. Sci. 137 (1984) 38.10.1016/0039-6028(84)90675-7Search in Google Scholar
26 Spitzer, A.; Löth, H.: Surf. Sci. 120 (1982) 376.10.1016/0039-6028(82)90157-1Search in Google Scholar
27 Benndorf, C.; Nöbl, C.; Rösenberg, M.; Thieme, F.: Surf. Sci. 111 (1981) 87.10.1016/0039-6028(81)90477-5Search in Google Scholar
28 Thiel, P.A.; Madey, T.E.: Surf. Sci. Rep. 7 (1987) 211.10.1016/0167-5729(87)90001-XSearch in Google Scholar
29 Kubaschewski, O.; Hopkins, B.E.: Oxidation of Metals and Alloys, Butterworths, London (1967) 7 and 24.Search in Google Scholar
30 Rochester, C.H.; Topham, S.A.: J. Chem. Soc. Faraday Trans. 1 (1979) 1073.10.1039/f19797501073Search in Google Scholar
31 McCafferty, E.; Pravdic, V.; Zettlemoyer, A.C.: Trans. Faraday Soc. 66 (1970) 1720.10.1039/tf9706601720Search in Google Scholar
© 1997 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Aufsätze
- Automatic Determination of Dendritic Arm Spacing in Directionally Solidified Matters
- Microstructure and Mechanical Properties of Titanium Castings
- Microstructural Features Controlling the Dry Sliding Wear Response of Some Bearing Alloys
- Correlation of Microstructure and Giant Magnetoresistance in Electrodeposited Ni – Cu/Cu Multilayers
- Microstructure-related Modelling of the Deformation Behaviour of the Superalloy CoCr22Ni22W14
- An Assessment of the Si Mobility and the Application to Phase Transformations in Silicon Steels
- Simulated Weld HAZ of Vanadium Modified 2.25Cr-1Mo Steel
- The Metastable Miscibility Gap in the System Fe–Cu
- Precipitation in Iron Aluminides Containing Carbon and Titanium, Zirconium or Niobium
- Use of a Single Zirconia Electrolyte Cell to Measure Basicity in Binary and Ternary Carbonate Melts
- Adsorption Studies of Water on Copper, Nickel, and Iron: Assessment of the Polarization Model
- Mitteilungen der Deutschen Gesellschaft für Materialkunde e.V
- Personen
- Terminkalender
Articles in the same Issue
- Frontmatter
- Aufsätze
- Automatic Determination of Dendritic Arm Spacing in Directionally Solidified Matters
- Microstructure and Mechanical Properties of Titanium Castings
- Microstructural Features Controlling the Dry Sliding Wear Response of Some Bearing Alloys
- Correlation of Microstructure and Giant Magnetoresistance in Electrodeposited Ni – Cu/Cu Multilayers
- Microstructure-related Modelling of the Deformation Behaviour of the Superalloy CoCr22Ni22W14
- An Assessment of the Si Mobility and the Application to Phase Transformations in Silicon Steels
- Simulated Weld HAZ of Vanadium Modified 2.25Cr-1Mo Steel
- The Metastable Miscibility Gap in the System Fe–Cu
- Precipitation in Iron Aluminides Containing Carbon and Titanium, Zirconium or Niobium
- Use of a Single Zirconia Electrolyte Cell to Measure Basicity in Binary and Ternary Carbonate Melts
- Adsorption Studies of Water on Copper, Nickel, and Iron: Assessment of the Polarization Model
- Mitteilungen der Deutschen Gesellschaft für Materialkunde e.V
- Personen
- Terminkalender