Home Technology Correlation of Microstructure and Giant Magnetoresistance in Electrodeposited Ni – Cu/Cu Multilayers
Article
Licensed
Unlicensed Requires Authentication

Correlation of Microstructure and Giant Magnetoresistance in Electrodeposited Ni – Cu/Cu Multilayers

  • Agnes Cziráki , Imre Gerőcs , Bálint Fogarassy , Birgit Arnold , Marianne Reibold , Klaus Wetzig , Enikõ Tóth-Kádár and Imre Bakonyi
Published/Copyright: December 4, 2021

Abstract

Giant magnetoresistance (GMR) was observed in pulse-plated Ni81Cu19/Cu multilayers with a maximum GMR value of about 2 % for Ni – Cu layer thicknesses around 2 to 3 nm. A columnar growth of the multilayers was detected by transmission electron microscopy. The column width (grain size) was the largest for multilayers with the maximum GMR. It could also be established that the multilayer planes are often inclined at angle, which depends on the chemical modulation wavelength, with respect to the substrate plane. This definitely gives rise to a current-perpendicular-to-plane contribution to the GMR, offering a plausible explanation for the location of the maximum of the GMR vs thickness curve. The lattice constant mismatch between the Ni – Cu and Cu layers gives rise to considerable stresses which are relaxed, besides the formation of twinning and dislocation structures, also by an induced periodic lattice distortion (structural modulation) not completely coinciding with the chemical modulation in every direction.

Abstract

Mehrfachschichten der Zusammensetzung Ni81Cu19/Cu wurden durch galvanische Abscheidung hergestellt, in denen der sogenannte „gigantische“ magnetische Widerstand (GMR) beobachtet werden konnte. Der Maximalwert des GMR war etwa 2 % bei einer Dicke von 2 bis 3 nm der Ni – Cu Schichten. Transmissionselektronenmikroskopie hat gezeigt, daβ diese Mehrfachschichten eine kolumnare Struktur haben. Es wurde festgestellt, daβ der Durchmesser der kolumnaren Struktureinheiten, d. h. die Korngröβe, gerade für diejenige Mehrfachschichten ein Maximum hat, bei denen auch der GMR der gröβte ist. Die Mehrfachschichtebenen bilden oft einen Winkel mit der Substratebene, dessen Gröβe von der chemischen Modulationslänge abhängig ist. Deshalb hat der GMR einen Beitrag der Stromkomponente, die senkrecht zur Mehrfachschichtebene flieβt was eine mögliche Erklärung für die Lage des GMR-Maximums in Abhöngigkeit von der Dicke der magnetischen Schichten gibt. Da die Gitterkonstanten für die Cu und Ni – Cu Schichten unterschiedlich sind, treten groβe Spannungen in der Mehrfachschichtstruktur auf. Diese Spannungen werden dann sowohl durch die Bildung von „Zwillings-“ und Versetzungsstrukturen, als auch durch eine induzierte periodische Gitterverzerrung (strukturelle Modulation) relaxiert, wobei die Richtungen der strukturellen und chemischen Modulation nicht überall völlig übereinstimmen.


Á. Cziráki, I. Gerőcs, B. Fogarassy Eötvös University, Institute for Solid State Physics, H-1088 Budapest, Múzeum krt. 6–8, Hungary
B. Arnold, M. Reibold, K. Wetzig Institut für Festkörper- und Werkstofforschung, Institut für Festkörperanalytik und Strukturforschung, Helmholtzstraβe 20, D-01069 Dresden, Germany
E. Tóth-Kádár, I. Bakonyi Research Institute for Solid State Physics Hungarian Academy of Sciences, H-1525 Budapest, P.O.B. 49, Hungary

Funding statement: This work has been supported by the Hungarian Research Fund (OTKA) through grant T015649. The XRD work has been performed on an apparatus purchased by the Eötvös University under grant CEF 1156. The collaboration of G. Radnóczi and his colleagues (Research Institute for Technical Physics, Budapest) in preparing some of the cross-sectional TEM samples is gratefully acknowledged. One of the authors (Á.C.) is indebted to D. Bauer and J. Thomas (Institut für Festkörper- und Werkstofforschung, Dresden) for useful discussions.

Literature

1 Celis, J. P.; Haseeb, A.; Roos, J. R.: Trans. Inst. Metal. Finish. 70 (1992) 123.10.1080/00202967.1992.11870958Search in Google Scholar

2 Ross, C. A.: Ann. Rev. Mater. Sci. 24 (1994) 159.10.1146/annurev.ms.24.080194.001111Search in Google Scholar

3 Schwarzacher,W.; Lashmore, D. S.: IEEE Trans. Magn. 32 (1996) 3133.10.1109/20.508379Search in Google Scholar

4 Alper, M.; Attenhorough, K.; Hart, R.; Lane, S. J.; Lashmore, D.S.; Younes, C.; Schwarzacher, W. S.: Appl. Phys. Lett. 63(1993) 2144.10.1063/1.110567Search in Google Scholar

5 Lashmore, D. S.; Zhang, Y.; Hua, S.; Dariel, M. P.; Swartzendruber, L.; Salamanca-Riha, L.: in: L. T. Romankiw; D.A. Herman, Jr. Proc. 3rd Int. Symp. on Magnetic Materials, Processes, and Devices, Electrodeposition Division of The Electrochemical Society, Pennington, NJ (1994) 205.Search in Google Scholar

6 Bird, K. D.; Schlesinger, M.: J. Electrochem. Soc. 142 (1995) L65.10.1149/1.2044185Search in Google Scholar

7 Bakonyi, I.; Tóth-Kádár, E.; Becsei, T; Tóth, J.; Tarnóczi, T; Cziráki, A.; Gerőcs, I.; Nabiyouni, G.; Schwarzbacher, W.: J. Magn. Magn.Mater. 156 (1996) 347.10.1016/0304-8853(95)00892-6Search in Google Scholar

8 Lenczowski, S. K. J.; Schönenberger, C.; Gijs, M. A. M.; de Jonge, W. J. M.: J. Magn. Magn.Mater. 148 (1995) 455.10.1016/0304-8853(95)00109-3Search in Google Scholar

9 Ueda, Y.; Hataya, N.; Zaman, H.: J. Magn. Magn.Mater. 156 (1996) 350.10.1016/0304-8853(95)00894-2Search in Google Scholar

10 Attenborough, K.; Hart, R.; Lane, S. J.; Alper, M.; Schwarzacher, W S.: J. Magn. Magn.Mater. 148 (1995) 335.10.1016/0304-8853(95)89007-6Search in Google Scholar

11 Alper, M.; Aplin, P. S.; Attenborough, K.; Dingley, D. J.; Hart, R.; Lane, S. J.; Lashmore, D. S.; Schwarzacher, W.: J. Magn. Magn.Mater. 126 (1993) 8.10.1016/0304-8853(93)90530-FSearch in Google Scholar

12 Mitura, Z.; Mikolajczak, P.: J. Phys. F: Met. Phys. 18 (1988) 183.10.1088/0305-4608/18/2/003Search in Google Scholar

13 Hakkens, F.; Coene, W.; den Broeder, F. J. A.: Mater. Res. Soc. Symp. Proc. 231 (1992) 397.10.1557/PROC-231-397Search in Google Scholar

14 De Veirman, A. E. M.; Hakkens, F. J. G.; Dirks, A. G.: Ultramicroscopy. 51 (1993) 306.10.1016/0304-3991(93)90156-RSearch in Google Scholar

15 Staiger, W.; Michel, A.; Pierron-Bohnes, V; Hermann, N.; Cadeville, M. C.: J. Mater. Res. 12 (1997) 161.10.1557/JMR.1997.0023Search in Google Scholar

16 Lashmore, D. S.; Thomson, R.: J. Mater. Res. 7 (1992) 2379.10.1557/JMR.1992.2379Search in Google Scholar

17 Wang, L.; Fricoteaux, P.; Yu-Zhang, K.; Troyon, M.; Bonhomme, P.; Douglade, J.; Metrot, A.: Thin Solid Films. 261 (1995) 160.10.1016/S0040-6090(95)06538-5Search in Google Scholar

18 Hua, S. Z.; Salamanca-Riba, L.; Bennett, L. H.; Swartzendruber, L. J.; McMichael, R. D.; Lashmore, D. S.: Scripta metall. mater. 33 (1995) 1643.10.1016/0956-716X(95)00399-GSearch in Google Scholar

19 Bakonyi, I.; Tóth-Kádár, E.; Becsei, T.; Tóth, J.; Tarnóczi, T.; Pogány, L.; Kamasa, P.; Cziráki, Á.; Gerőcs, I.; Nabiyouni, G.; Schwarzacher, W.: to be published.Search in Google Scholar

20 Nabiyouni, G.; Schwarzacher, W.: J. Magn. Magn.Mater. 156 (1996) 355.10.1016/0304-8853(95)00896-9Search in Google Scholar

21 Villars, P.; Calvert, L. D.: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM, Metals Park, OH (1985).Search in Google Scholar

22 Ness, J. N.; Stobbs, W. M.: Phil. Mag.A. 63 (1991) 1.Search in Google Scholar

Received: 1997-02-10
Published Online: 2021-12-04

© 1997 Carl Hanser Verlag, München

Downloaded on 1.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/ijmr-1997-0147/html
Scroll to top button