Startseite Experimental Investigation and Thermodynamic Calculation of the Ternary System Mn–Y–Zr
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experimental Investigation and Thermodynamic Calculation of the Ternary System Mn–Y–Zr

  • Hans Flandorfer , Joachim Gröbner , Athanasis Stamou , Nikitas Hassiotis , Adriana Saccone , Peter Rogl , Ria Wouters , Hans Seifert , Daniele Macciò , Riccardo Ferro , Gregory Haidemenopoulos , Luc Delaey und Günter Effenberg
Veröffentlicht/Copyright: 2. Dezember 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Phase equilibria were established in the ternary system Mn–Y–Zr for an isothermal section at 800 °C by use of X-ray powder diffraction, light optical microscopy and quantitative EPMA. No ternary compounds were observed. Mutual solid solubilities among the binary phases were found to be generally less than ~ 2 at.%. Solubility of Mn, Y in αZr at 800 °C was 2.1 at.% Mn and 2.9 at.% Y, whereas no Mn dissolves in α Y. A reinvestigation of the binary solid solubility limits of Mn2Zr1−x at 800 °C by quantitative EPMA and X-ray powder full profile analyses revealed a smaller homogeneous region, Mn2Zr1−x, 0 ≤ x ≤ 0.20, than previously reported in literature. There is little solubility of Y in stoichiometric Mn2Zr and maximum solubility of Mn, Zr in αY was determined from as cast alloys to be 1.8 at.% Mn and 2.4 at.% Zr.

Based on this experimental findings and the literature data relevant to the binary systems a thermodynamic calculation of the ternary system was attempted, requesting a significantly higher heat of formation of Mn2Zr than previously reported. A nearly pseudobinary section was experimentally established for the join Y–Mn2Zr with a maximum eutectic at 1072 ± 10°C at 57 at.% Y (calculated at 1064 °C and 58 % Y). Three ternary eutectics were defined: L⇔Mn2Zr + Mn2Y + Mn23Y6 at 1090 ± 10 °C at a composition of Mn75Y23Zr2 (calculated at 1087 °C and at Mn72Y26Zr2), L ⇔ (αY) + Mn2Y + Mn2Zr at 870 ± 10 °C at a composition of Mn40Y57Zr3 (calculated at 883 °C and at Mn36Y63Zr1) and L ⇔ (αY)+ (βZr) + Mn2Zr at 1054 ± 10 °C at a composition of Mn26Y15Zr59 (calculated at Mn24Y21Zr55 and at 992 °C).


Hans Flandorfer1, Joachim Grobner1,2, Athanasis Stamou1,3, Nikitas Hassiotis1,3, Adriana Saccone4, Peter Rogl1, Ria Wouters5, Hans Sei- fert2, Daniele Maccio4, Riccardo Ferro4, Gregory Haidemenopou- los3, Luc Delaey5 and Giinter Effenberg2
1Institut fur Physikalische Chemie, Universitat Wien, Wahringer- straBe 42, A-1090 Wien/Austria; 2Material Science International, Nobelstr. 15, Postfach 800749, D-70507 Stuttgart, Germany; 3Laboratory of Materials, Dept. of Mechanical Engineering, University of Thessaly, Pedion Areos, Volos, Greece; 4Dipartimento di Chimica e Chimica Industriale, Universita di Genova, Sezione di Chimica Inorganica e Metallurgia, Via Dodecaneso 31, I-16146 Genova, Italy; 5Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, de Croylaan 2, B-3001 Heverlee, Belgium

Funding statement: This research was sponsored via the EU as a HCM-network CHRX- CT93-0284. The Austrian part was supported by the FFWF under grant P9709. R.F. and P.R. are grateful to the Austrian – Italian Scientific - Technical Exchange Program for fellowships in Genova and Wien, respectively (project N13). This exchange program provided the starting activity in the early stage of this research cooperation. Particularly the assistance of Dr. A. Sasso, Dr. E. Campo, Dr. V. Manno from the Italian Embassy and Mag. Koppensteiner and Dr. Zeinar from the Austrian Institute for Academic Exchange is greatly acknowledged

Literature

1 Massalski, TB.; Subramanian, P.R.; Okamoto, H.; Kacprzak, L.: Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, USA (1990).Suche in Google Scholar

2 Palenzona, A.; Cirafici, S.: J. Phase Equilibria 12 (1991) 474–478.10.1007/BF02645974Suche in Google Scholar

3 Palenzona, A.; Cirafici, S.: J. Phase Equilibria 12 (1991) 485–489.10.1007/BF02645977Suche in Google Scholar

4 Kirchmayr H.R.; Lihl, F.: Rare Earth–Mn Alloys, Their Preparation, Crystal Structures, Phase Diagrams and Magnetic Properties, Tech. Rep. AFML–TR 66–366, AD65 4653, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio (1967) 38.Suche in Google Scholar

5 Kirchmayr H.R.; Mach, D.: Z. Metallkd. 58 (1967) 66–69.Suche in Google Scholar

6 Myklebust, R.L.; Daane, A.H.: Trans. Metal. Soc. AIME 224 (1962) 354–357.Suche in Google Scholar

7 Okamoto, H.; Massalski, TB.: J. Phase Equilibria 15 (1994) 500–521.10.1007/BF02649400Suche in Google Scholar

8 Mueller, W.M.; Blackledge, J.P.; Libowitz, G.G.: Metal Hybrides, Academia Press, New York (1968).Suche in Google Scholar

9 Essen R.M.; Buschow, K.H.J.: Mat. Res. Bull. 15 (1980) 1149.10.1016/0025-5408(80)90079-3Suche in Google Scholar

10 Nishimiya, N.: Mater. Res. Bull 21 (1986) 1025–1037.10.1016/0025-5408(86)90217-5Suche in Google Scholar

11 Pourarian, F.; Fujii, H.; Wallace, W.E.; Sinha, VK.; Smith, H.K.: J. Phys. Chem. 85 (1981) 3105.10.1021/j150621a020Suche in Google Scholar

12 Massalski, TB.; Murray, J.L.; Baker‚ H.: Binary Alloy Phase Diagrams, 1st ed., ASM International, Metals Park, OH, USA (1986).Suche in Google Scholar

13 De Boer, FR.; Boom, R.; Mattens, W.C.M.; Miedema, A.R.; Nielson, A.K.: Cohesion in Metals, Elsevier Science Publishers, Amsterdam (1988).Suche in Google Scholar

14 Blacklock, K.; White, H.W.; Hardman, K.; James, W.J.: J. Chem. Phys. 72 (1980) 2883–2884.10.1063/1.439392Suche in Google Scholar

15 Shurin, A.; Dimitrieva, G.P.: Metallofizika 29 (1970) 6–23.Suche in Google Scholar

16 Sidnorov, O.Yu.; Valishev, M.G.; Kolesnikov, S.P.; Esin, Yu.O.; Gel᾽d, P.V.: Metally 3 (1991) 58.Suche in Google Scholar

17 Wiles, D.B.; Young, R.A.: J. Appl. Crystallogr. 14 (1981) 151 (LNS/ILL–Version Rodriguez, J.).10.1107/S002188988100900XSuche in Google Scholar

18 Goldstein, R.; Newbury, D.E.; Echlin, P.; Joy, D.C.; Fiori, C.E.; Lifshin, E.: Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, New York, London (1981) Chapter 7, 305.10.1007/978-1-4613-3273-2_7Suche in Google Scholar

19 Duncumb, P.; Jones, E.M.: Tube Investments Company Report (1969) No. 260.Suche in Google Scholar

20 Tanaka, T.; Gokcen, N.A.; Morita, Z.: Z. Metallkd. 81 (1990) 4954.Suche in Google Scholar

21 Tanaka, T.; Gokcen, N.A.; Morita, Z.: Z. Metallkd. 81 (1990) 349–353.Suche in Google Scholar

22 Lukas, H.L.; Henig, E.-Th.; Zimmermann, B.: Calphad 1 (1977) 225–236.10.1016/0364-5916(77)90002-5Suche in Google Scholar

23 Sundman, B.; Jansson, B.; Anderson, J.-O.: Calphad 9 (1985) 153–190.10.1016/0364-5916(85)90021-5Suche in Google Scholar

24 Dwight, A.E.: Trans. ASM 53 (1961) 479–500.Suche in Google Scholar

25 Buschow, K.H.J.: Solid State Commun. 21 (1977) 1031–1033.10.1016/0038-1098(77)90012-6Suche in Google Scholar

26 Beaudry, B.J.; Haefling, J.F.; Daane, A.H.: Acta Crystallogr. 13 (1960) 743–744.10.1107/S0365110X60001783Suche in Google Scholar

Received: 1996-10-21
Published Online: 2021-12-02

© 1997 Carl Hanser Verlag, München

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/ijmr-1997-0099/html
Button zum nach oben scrollen