On the Charge State of Melt-Blown Polymer Materials
-
L. S. Pinchuk
Abstract
Fibrous polymer materials formed by LDPE melt spraying with a gas flow during extrusion were exposed to thermally stimulated depolarization. The analysis of thermally stimulated current spectra and the sample charge state has shown that the fibers possess the spontaneous polarizing charge. IR-spectroscopy has proved the material production to be accompanied by vinylene, vinyl, transvinylene and other nonsaturated groups formation. The latters are, probably, behaving as neutral trapping centers during their interaction with charge carriers formed at melt dispersion by the compressed gas flow and its contact with metal parts of equipment. The kinetics of these processes can be monitored by regulating technological regimes of fibrous material formation. Intensified action on the polymer melt might rise the spontaneous polarizing charge whose density can reach 10−10 to 10−12 C/cm2. Charge of the materials under study is rather stable. It does not fall below 40% upon a 160-days storage in humid atmosphere. It appears thus that the technique of fibrous material production by polymer melt spraying is an electret method.
© 1998, Carl Hanser Verlag, Munich
Articles in the same Issue
- Contents
- Contents
- Editorial
- J. A. Biesenberger, G. Astarita, D. C. Bogue
- Screw Extrusion/Mixing
- Modeling Solids Conveying in Polymer Extruders
- Comparison between LDPE Conventional and Autothermal Extrusion Characteristics
- Transesterification of Ethylene Acetate Copolymer in a Twin Screw Extruder
- Stabilising the Structure of HDPE by the Use of Highly-dispersed Mixture of Fe/FeO
- Pumping Characteristics of an Intermeshing Co-rotating Twin Screw Extruder
- Flow Behaviour of Blends of Poly(ethylene-Co-Acrylic Acid) and Epoxidised Natural Rubber
- Die Extrusion
- Rheological Behaviour of HDPE/PA 11 Blends
- Melt Flow Properties of LDPE/HDPE Blends in Capillary Extrusion
- Fibers and Film
- Rheological Behaviour of LLDPE/LDPE Blends under Elongational Deformation
- Processing/Structure Relationships of Mica-Filled PE-Films with Low Oxygen Permeability
- On the Charge State of Melt-Blown Polymer Materials
- Temperature Measuring in Plastics Processing with Infrared Radiation Thermometers
- Comparative Study of Structure Development in Melt Spinning Polyolefin Fibers
- Moulding
- Sintering Rheology of Semi-Crystalline Polymers
- Molding
- Melt Flow Instabilities of Filled HDPE
- Experimental Validation of Shrinkage Predictions for Injection Molded Products
Articles in the same Issue
- Contents
- Contents
- Editorial
- J. A. Biesenberger, G. Astarita, D. C. Bogue
- Screw Extrusion/Mixing
- Modeling Solids Conveying in Polymer Extruders
- Comparison between LDPE Conventional and Autothermal Extrusion Characteristics
- Transesterification of Ethylene Acetate Copolymer in a Twin Screw Extruder
- Stabilising the Structure of HDPE by the Use of Highly-dispersed Mixture of Fe/FeO
- Pumping Characteristics of an Intermeshing Co-rotating Twin Screw Extruder
- Flow Behaviour of Blends of Poly(ethylene-Co-Acrylic Acid) and Epoxidised Natural Rubber
- Die Extrusion
- Rheological Behaviour of HDPE/PA 11 Blends
- Melt Flow Properties of LDPE/HDPE Blends in Capillary Extrusion
- Fibers and Film
- Rheological Behaviour of LLDPE/LDPE Blends under Elongational Deformation
- Processing/Structure Relationships of Mica-Filled PE-Films with Low Oxygen Permeability
- On the Charge State of Melt-Blown Polymer Materials
- Temperature Measuring in Plastics Processing with Infrared Radiation Thermometers
- Comparative Study of Structure Development in Melt Spinning Polyolefin Fibers
- Moulding
- Sintering Rheology of Semi-Crystalline Polymers
- Molding
- Melt Flow Instabilities of Filled HDPE
- Experimental Validation of Shrinkage Predictions for Injection Molded Products