Continuous Mixing of Low Viscosity and High Viscosity Polymer Melts in a Modular Co-Rotating Twin Screw Extruder
-
S.-H. Lee
and J. L. White
Abstract
Modular self-wiping co-rotating twin screw extruders have been widely used in polymer blending and compounding over the past four decades since they were first commercialized by Werner and Pfleiderer [1]. Despite its importance in the polymer processing industry, studies of the initial mixing process in a modular co-rotating twin screw extruder of binary polymer blends have received little attention until the last three years [2 to 9]. Among the various factors controlling the mixing of thermoplastic blends, the viscosity characteristics are a major determinant the degree of deformation of a disperse phase domain depends greatly upon the viscosity ratio. When one component of the mixing system has a very low viscosity, and there is an extremely large viscosity ratio, it is well known to be very difficult to mix [10 to 12].
© 1997, Carl Hanser Verlag, Munich
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Screw Extrusion/Mixing
- Melt Temperatures and Residence Times in an Extruder by Infrared Spectroscopy
- Continuous Mixing of Low Viscosity and High Viscosity Polymer Melts in a Modular Co-Rotating Twin Screw Extruder
- Flow Field Analysis of Both the Trilobal Element and Mixing Disc Zones within a Closely Intermeshing, Co-Rotating Twin-Screw Extruder
- A Composite Model for Solid Conveying, Melting, Pressure and Fill Factor Profiles in Modular Co -Rotating Twin Screw Extruders
- Temperature Rise in the Extrusion of Highly Viscous Composite Materials
- Simulation of Free Surface Flow in Partially Filled Internal Mixers
- Die Extrusion
- Processing of Sheath-Core and Matrix-Fibril Fibers Composed of PP and a TLCP
- Fibers and Films
- Experimental and Theoretical Study of Rectangular Fiber Melt Spinning
- Distributed Crystallinity Control during Cast Film Extrusion
- Application of Neural Networks to Analyze the Drawing Process of PET Films
- Molding
- Physically-Based Adaptive Control of Cavity Pressure in Injection Molding: Filling Phase
- In-Mould Shrinkage Measurements of PS Samples with Strain Gages
- The Occurrence of Flow Marks during Injection Molding of Linear Polyethylene
Articles in the same Issue
- Contents
- Contents
- Editorial
- Editorial
- Screw Extrusion/Mixing
- Melt Temperatures and Residence Times in an Extruder by Infrared Spectroscopy
- Continuous Mixing of Low Viscosity and High Viscosity Polymer Melts in a Modular Co-Rotating Twin Screw Extruder
- Flow Field Analysis of Both the Trilobal Element and Mixing Disc Zones within a Closely Intermeshing, Co-Rotating Twin-Screw Extruder
- A Composite Model for Solid Conveying, Melting, Pressure and Fill Factor Profiles in Modular Co -Rotating Twin Screw Extruders
- Temperature Rise in the Extrusion of Highly Viscous Composite Materials
- Simulation of Free Surface Flow in Partially Filled Internal Mixers
- Die Extrusion
- Processing of Sheath-Core and Matrix-Fibril Fibers Composed of PP and a TLCP
- Fibers and Films
- Experimental and Theoretical Study of Rectangular Fiber Melt Spinning
- Distributed Crystallinity Control during Cast Film Extrusion
- Application of Neural Networks to Analyze the Drawing Process of PET Films
- Molding
- Physically-Based Adaptive Control of Cavity Pressure in Injection Molding: Filling Phase
- In-Mould Shrinkage Measurements of PS Samples with Strain Gages
- The Occurrence of Flow Marks during Injection Molding of Linear Polyethylene