Home On Induced Properties and Self Heating during Free Blowing of PET Preform
Article
Licensed
Unlicensed Requires Authentication

On Induced Properties and Self Heating during Free Blowing of PET Preform

  • Y.-M. Luo and L. Chevalier
Published/Copyright: June 19, 2019
Become an author with De Gruyter Brill

Abstract

The great influence of temperature on polymer's behavior is well known and a 10°C increase can lead to a 10-time reduction of the viscosity near the glass transition temperature. To manage accurate simulation of thermoforming processes, and particularly the stretch blow molding process that is managed in the vicinity of Tg, it is necessary to take into account the self heating phenomena that may have impact on induced properties. In the particular case of polyethylene terephthalate (PET), injected preforms have been blown with different initial temperature and followed using a thermal camera. For an identical final volume of the blown preform, the influence of initial temperature on self-heating is discussed. Back to room temperature, induced mechanical properties are measured using digital image correlation: bottles are blown under different pressures and the strain fields are measured. Using the virtual field method on a region of interest of the bottle, these results allow the identification of the induced mechanical properties. Comparison between the self-heating and the induced modulus is managed and the effect of the self heating on the free blown shapes and induced properties is discussed.


*Correspondence address, Mail address: Luc Chevalier, Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Marne-la-Vallée, France, E-mail:

References

Bedoui, F., “Etude du Comportement Elastique et Viscoélastique Linéaire des Polymères Semi-Cristallins par Approche Micromécanique”, PhD Thesis, ENSAM, Paris (2005)Search in Google Scholar

Champin, C., “Modélisation 3D du Chauffage par Rayonnement Infrarouge et de l'étirage Soufflage de Corps Creux en PET”, PhD Thesis, Ecole Nationale Supérieure Des Mines De Paris, Sophia-Antipolis (2007)Search in Google Scholar

Chevalier, L., Linhone, C. and Reigner, G., “Induced Crystallinity during Stretch-Blow Moulding Process and its Influence on Mechanical Strength of Poly(ethylene terephthalate) Bottles”, Plast. Rubber Compos., 28, 8, 393401 (1999) 10.1179/146580199101540547Search in Google Scholar

Cosson, B., “Modélisation et Simulation Numérique du Procédé de Soufflage par Bi-Orientation des Bouteilles en PET: Evolution de Microstructure, Evolution de Comportement”, PhD Thesis, University Paris-Est, Marne-la-Vallée (2008)Search in Google Scholar

Cosson, B., Chevalier, L. and Régnier, G., “Simulation of the Stretch Blow Moulding Process: From the Modelling of the Microstructure Evolution to the End-Use Elastic Properties of Polyethylene Terephthalate Bottles“, Int. J. Mater. Form., 5, 1, 3953 (2012) 10.1007/s12289-010-1010-ySearch in Google Scholar

Erchiqui, F., Hamani, I. and Charrette, A., “Modélisation par Eléments Finis du Chauffage Infrarouge des Membranes Thermoplastiques Semi-Transparentes”, Int. J. Therm. Sci., 48, 7384 (2009) 10.1016/j.ijthermalsci.2008.03.007Search in Google Scholar

Gong, Y. H., “Sur l'Analyse Multiéchelle du Changement de Morphologie du PET sous l'effet de la Température ou des Sollicitations Mécaniques”, PhD Thesis, University Paris-Est, Marne-la-Vallée (2018)Search in Google Scholar

Hild, F., Roux, S.: Optical Methods for Solid Mechanics. A Full-Field Approach, Wiley-VCH, Weinheim, 183–228 (2012)Search in Google Scholar

Hild, F., Roux, S., Gras, R., Guerrero, M., Marante, E. and Florez-Lopez, J., “Optics and Lasers in Engineering”, Optical Measurements, 47, 495503 (2009)10.1016/j.optlaseng.2008.03.006Search in Google Scholar

Huang, H. X., Deng, Y. H. and Huang, Y. F., “Temperature Profiles within Reheated Preform in Stretch Blow Molding”, ANTEC'05, Boston, Massachusetts (2005)Search in Google Scholar

Lebaudy, P., Saiter, J. M., Grenet, J. and Vautier, C., “Temperature Distribution in Poly(ethylene terephthalate) Plate Undergoing Heat Treatment. Diffusion Influence and Application”, Polymer, 36, 12171221 (1995) 10.1016/0032-3861(95)93923-ASearch in Google Scholar

Luo, Y. M., Chevalier, L., Monteiro, E. and Utheza, F., “Self Heating during Stretch Blow Molding: An Experimental Numerical Comparison”, 20th International ESAFORM Conference on Material Forming, Dublin, Ireland (2017) 10.1063/1.5008066Search in Google Scholar

Luo, Y. M., Chevalier, L., Utheza, F. and Monteiro, E., “Numerical Simulation of the Thermodependant Visco-Hyperelastic Behaviour of PET near the Glass Transition Temperature: Prediction of the Self Heating during Biaxail Tension Test”, Polymer Eng. Sci., 53, 26832695 (2013) 10.1002/pen.23522Search in Google Scholar

Marco, Y., “Caractérisation Multi-Axiale du Comportement et de la Micro-Structure d'un Semi-Cristallin: Application au Cas du P.E.T.”, PhD Thesis, ENS Cachan, Cachan (2003)Search in Google Scholar

Menary, G., “The Effect of Temperature, Strain Rate and Strain on the Induced Mechanical Properties of Biaxially Stretched PET”, 17th Annual ESAFORM Conference on Material Forming, Erlangen, Germany (2012) 10.4028/www.scientific.net/KEM.504-506.1117Search in Google Scholar

Monteix, S., Schmidt, F. and Le Maoult, Y., “Experimental Study and Numerical Simulation of Preform or Sheet Exposed to Infrared Radiative Heating”, J. Mater. Process. Technol., 119, 9097 (2001) 10.1016/S0924-0136(01)00882-2Search in Google Scholar

Pierron, F., Grediac, M.,: The Virtual Fields Method: Extracting Constitutive Mechanical Parameters From Full- Field Deformation Measurements”, Springer Science and Business Media, Berlin (2012)Search in Google Scholar

Salomeia, Y. M., Menary, G. H. and Armstrong, C. G., “Experimental Investigation of Stretch Blow Molding, Part 1: Instrumentation in an Industrial Environment”, Adv. Polym. Tech., 32, S1, E771E783 (2013) 10.1002/adv.21291Search in Google Scholar

Schmidt, F. M., Le Maoult, Y. and Monteix, S., “Modelling of Infrared Heating of Thermoplastic Sheet Used in Thermoforming Process”, J. Mater. Process. Technol., 143–144, 225231 (2003)10.1016/S0924-0136(03)00291-7Search in Google Scholar

Venkateswaran, G., Cameron, M. R. and Jabarin, S. A., “Effects of Temperature Profiles through Preform Thickness on the Properties of Reheat – Blown PET Containers”, Adv. Polym. Tech., 17, 237249 (1998) 10.1002/(SICI)1098-2329(199823)17:3<237::AID-ADV4>3.0.CO;2-TSearch in Google Scholar

Yousefi, A., Di Raddo, R. and Bendada, A., “Simulation of the Mobile Preform Reheat in Injection Stretch Blow Moulding Process”, PPS-17, The Polymer Processing Society, p. 134146 (2001)Search in Google Scholar

Zimmer, J., Chauvin, G. and Stommel, M., “Experimental Investigation and Numerical Simulation of Liquid Supported Stretch Blow Molding”, Polym. Eng. Sci., 55, 933944 (2015) 10.1002/pen.23961Search in Google Scholar

Zimmer, J., Klein, D. and Stommel, M., “Experimental and Numerical Analysis of Liquid-Forming”, Key Eng. Mater., 651–653, 842847 (2015)10.4028/www.scientific.net/KEM.651-653.842Search in Google Scholar

Received: 2018-09-07
Accepted: 2018-11-29
Published Online: 2019-06-19
Published in Print: 2019-07-03

© 2019, Carl Hanser Verlag, Munich

Downloaded on 29.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.3759/pdf
Scroll to top button