Home Physical Sciences Modification of Syndiotactic Polypropylene with Nano-Calcium Carbonate and Halloysite
Article
Licensed
Unlicensed Requires Authentication

Modification of Syndiotactic Polypropylene with Nano-Calcium Carbonate and Halloysite

  • L. Pietrzak , E. Piorkowska , A. Galeski , J. Bojda and P. Sowinski
Published/Copyright: June 18, 2018
Become an author with De Gruyter Brill

Abstract

Composites of syndiotactic polypropylene (sPP) with 5 to 17 vol.° of halloysite and 2.5 to 7.5 vol.° of stearic acid modified nano-calcium carbonate, having an average grain size of 80 nm, were prepared and examined. The effect of fillers on thermal properties of sPP was different; halloysite increased markedly peak crystallization temperature. The composites with the highest filler contents, 7.5 vol.° of calcium carbonate and 17 vol.° of halloysite, exhibited a solid-like behavior at 170 °C, with the storage modulus exceeding the loss modulus in the entire frequency range, that is 512 to 0.1 rad s−1. The composites with halloysite exhibited decreased Izod impact strength compared to neat sPP. On the contrary, 2.7 fold improvement of the impact strength was found for the composites with nano-calcium carbonate. Moreover, nano-calcium carbonate did not worsen the drawability of the materials during uniaxial drawing. It was found that debonding at calcium carbonate/sPP interface occurred both during the impact test and tensile drawing facilitating the plastic deformation of the polymer.


*Correspondence address, Mail address: Ewa Piorkowska, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90 363 Lodz, Poland, E-mail:

References

Bartczak, Z., Argon, A. S., Cohen, R. E. and Weinberg, M., “Toughness Mechanism in Semi-Crystalline Polymer Blends: II. High-Density Polyethylene Toughened with Calcium Carbonate Filler Particles”, Polymer, 40, 23472365 (1999) 10.1016/S0032-3861(98)00444-3Search in Google Scholar

Bikiaris, D. N., Papageorgiou, G. Z., Pavlidou, E., Vouroutzis, N., Palatzoglou, P. and Karayannidis, G. P., “Preparation by Melt Mixing and Characterization of Isotactic Polypropylene/SiO2 Nanocomposites Containing Untreated and Surface-Treated Nanoparticles”, J. Appl. Polym. Sci., 100, 26842696 (2006) 10.1002/app.22849Search in Google Scholar

Chan, C. M., Wu, J. S., Li, J. X. and Cheung, Y. K., “Polypropylene/Calcium Carbonate Nanocomposites”, Polymer, 43, 29812992 (2002) 10.1016/S0032-3861(02)00120-9Search in Google Scholar

De Rosa, C., Auriemma, F., “Structure and Properties of Syndiotactic Polypropylene, A Highly Crystalline Thermoplastic Elastomer”, Prog. Polym. Sci., 31, 145237 (2006) 10.1016/j.progpolymsci.2005.11.002Search in Google Scholar

De Rosa, C., Auriemma, F., Vinti, V. and Galimberti, M., “Equilibrium Melting Temperature of Syndiotactic Polypropylene”, Macromolecules, 31, 62066210 (1998) 10.1021/ma9805248Search in Google Scholar

Fu, S. Y., Feng, X. Q., Lauke, B. and Mai, Y. W., “Effects of Paticle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate -Polymer Composites”, Composites Part B, 39, 933961 (2008) 10.1016/j.compositesb.2008.01.002Search in Google Scholar

Guo, T., Wang, L., Zhang, A. and Cai, T., “Effects of Nano Calcium Carbonate Modified by a Lanthanum Compound on the Properties of Polypropylene”, J. Appl. Polym. Sci., 97, 11541160 (2005) 10.1002/app.21804Search in Google Scholar

Jiang, L., ZhangJ. and WolcottM. P., “Comparison of Polylactide/Nano-Sized Calcium Carbonate and Polylactide/Montmorillonite Composites: Reinforcing Effects and Toughening Mechanisms”, Polymer, 48, 76327644 (2007) 10.1016/j.polymer.2007.11.001Search in Google Scholar

Langhe, S. L., Hiltner, A. and Baer, E., “Melt Crystallization of Syndiotactic Polypropylene in Nanolayer Confinement Impacting Structure”, Polymer, 52, 58795889 (2011) 10.1016/j.polymer2011.10.018Search in Google Scholar

Levita, G., Marchetti, A. and Lazzeri, A., “Fracture of Ultrafine Calcium Carbonate/Polypropylene Composites”, Polym. Compos., 10, 3943 (1989) 10.1002/pc.750100106Search in Google Scholar

Lin, Y., Chen, H. B., Chan, C. M. and Wu, J. S., “The Toughening Mechanism of Polypropylene/Calcium Carbonate Nanocomposites”, Polymer, 51, 32773284 (2010) 10.1016/j.polymer.2010.04.047Search in Google Scholar

Lu, Y., Liu, C., “Phase Transformation and Mechanical Properties of Halloysite Nanotubes-Modified Isotactic Polypropylene Filaments”, J. Appl. Polym. Sci., 134, article no. 44714 (2017) 10.1002/app.44714Search in Google Scholar

Ma, C. G., Rong, M. Z., Zhang, M. Q. and Friedrich, K., “Irradiation-Induced Surface Graft Polymerization onto Calcium Carbonate Nanoparticles and Its Toughening Effects on Polypropylene Composites”, Polym. Eng. Sci., 45, 529538 (2005) 10.1002/pen.20293Search in Google Scholar

Piekarska, K., Sowinski, P., Piorkowska, E., Ul Haque, Md. M. and Pracella, M., “Structure and Properties of Hybrid PLA Nanocomposites with Inorganic Nanofillers and Cellulose Fibers”, Composites Part A, 82, 3441 (2016) 10.1016/j.compositesa.2015.11.019Search in Google Scholar

Piekarska, K., Piorkowska, E. and Bojda, J., “The Influence of Matrix Crystallinity, Filler Grain Size and Modification on Properties of PLA/Calcium Carbonate Composites”, Polym. Test., 62, 203209 (2017) 10.1016/j.polymertesting.2017.06.025Search in Google Scholar

Pietrzak, L., Sowinski, P., Bojda, J., Piorkowska, E. and Galeski, A., “Toughening of Syndiotactic Polypropylene with Chalk”, J. Appl. Polym. Sci., 133, article no. 43651 (2016) 10.1002/app.43651Search in Google Scholar

Pluta, M., Bojda, J., Piorkowska, E., Murariu, M., Bonnaud, L. and Dubois, P., “The Effect of Halloysite Nanotubes and N,N’- Ethylenebis (Stearamide) on the Properties of Polylactide Nanocomposites with Amorphous Matrix”, Polym. Test., 61, 3545 (2017) 10.1016/j.polymertesting.2017.04.016Search in Google Scholar

Rodriguez-Arnold, J., Zhang, A., Cheng, S. Z. D., Lovinger, A. J., Hsieh, E. T., Chu, P., Johnson, T. W., Honnel, K. G., Geerts, R. G., Palackal, S. J., Hawley, G. R. and Welch, M. B., “Crystallization, Melting and Morphology of Syndiotactic Polypropylene Fractions: 1. Thermodynamic Properties, Overall Crystallization and Melting”, Polymer, 35, 18841895 (1994) 10.1016/0032-3861(94)90978-4Search in Google Scholar

Supaphol, P., “Crystallization and Melting Behavior in Syndiotactic Polypropylene: Origin of Multiple Melting Phenomenon”, J. Appl. Polym. Sci., 82, 10831097 (2001) 10.1002/app.1943Search in Google Scholar

Supaphol, P., Harnsiri, W., “Rheological and Isothermal Crystallization Characteristics of Neat and Calcium Carbonate-Filled Syndiotactic Polypropylene”, J. Appl. Polym. Sci., 100, 45154525 (2006) 10.1002/app.22451Search in Google Scholar

Suphaphol, P., Harnsiri, W. and Junkasem, J., “Effects of Calcium Carbonate and Its Purity on Crystallization and Melting Behavior, Mechanical Properties, and Processability of Syndiotactic Polypropylene”, J. Appl. Polym. Sci., 92, 201212 (2004) 10.1002/app.13432Search in Google Scholar

Tjong, S. C., “Structural and Mechanical Properties of Polymer Nanocomposites”, Mater. Sci. Eng. R Rep., 53, 73197 (2006) 10.1016/j.mser.2006.06.001Search in Google Scholar

Wu, C. L., Zhang, M. Q., Rong, M. Z. and Friedrich, K., “Silica Nanoparticles Filled Polypropylene: Effects of Particle Surface Treatment, Matrix Ductility and Particle Species on Mechanical Performance of the Composites”, Compos. Sci. Technol., 65, 635645 (2005) 10.1016/j.compscitech.2004.09.004Search in Google Scholar

Zubrowska, A., Masirek, R., Piorkowska, E. and Pietrzak, L., “Structure, Thermal and Mechanical Properties of Polypropylene Composites with Nano- and Micro-Diamonds”, Polimery, 60, 331336 (2015) 10.14314/polimery.2015.331Search in Google Scholar

Zuiderduin, W. C. J., Westzaan, C., Huetink, J. and Gaymans, R. J., “Toughening of Polypropylene with Calcium Carbonate Particles”, Polymer, 44, 261275 (2003) 10.1016/S0032-3861(02)00769-3Search in Google Scholar

Received: 2017-06-15
Accepted: 2017-10-29
Published Online: 2018-06-18
Published in Print: 2018-07-29

© 2018, Carl Hanser Verlag, Munich

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Editorial
  5. Special Issue Contributions
  6. Preparation of Poly(l-lactic acid) Scaffolds by Thermally Induced Phase Separation: Role of Thermal History
  7. Modification of Syndiotactic Polypropylene with Nano-Calcium Carbonate and Halloysite
  8. Enhancement of Heat Seal Properties of Polypropylene Films by Elastomer Incorporation
  9. Flow-Induced Crystallization of Polyamide-6
  10. PLA Crystallization Kinetics and Morphology Development
  11. Morphology in Multilayer Blown Films of Polypropylene and Ethylene-Octene Copolymer Blends
  12. A Criterion for the Formation of Fibrillar Layers in Injection Molded Parts
  13. Abnormal Behaviors in the Capillary Rheometry of Plastisol Formulations
  14. The Effect of Cellulose Nanocrystals (CNC) on Isothermal Crystallization Kinetics of LLDPE and HDPE
  15. A Rheological Investigation of the Crystallization Kinetics of Syndiotactic Polypropylene of Varying Degree of Tacticity
  16. Effect of Mutual Interaction between High and Low Stereo-Regularity Components on Structure Formation in Melt Spinning Process of Isotactic Polypropylene Blend Fibers
  17. Analysis of the No-Flow Criterion Based on Accurate Crystallization Data for the Simulation of Injection Molding of Semi-Crystalline Thermoplastics
  18. Interfacial Tension Properties in Biopolymer Blends: From Deformed Drop Retraction Method (DDRM) to Shear and Elongation Rheology-Application to Blown Film Extrusion
  19. Stress Optical Behavior and Structure Development in Melt Spun PEEK/PEI Blends
  20. PPS News
  21. PPS News
  22. Seikei Kakou Abstracts
  23. Seikei-Kakou Abstracts
Downloaded on 12.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/217.3521/html
Scroll to top button