Home Rheological Behavior and Modeling of Thermal Degradation of Poly(∊-Caprolactone) and Poly(L-Lactide)
Article
Licensed
Unlicensed Requires Authentication

Rheological Behavior and Modeling of Thermal Degradation of Poly(∊-Caprolactone) and Poly(L-Lactide)

  • A. López Arraiza , J. R. Sarasua , J. Verdu and X. Colin
Published/Copyright: April 6, 2013
Become an author with De Gruyter Brill

Abstract

Growing environmental concerns have led to the development of alternative biodegradable polymers with properties comparable to the conventional poly(ethylene), poly(propylene) or poly(ethylene terephthalate). In this paper the thermal degradation of poly(∊-caprolactone) (PCL) and poly(L-lactide) (PLLA) melts was investigated by rheometry and thermogravimetry under different temperatures and inert atmosphere. The chain scission process was modeled to explain the phenomenon. The analysis suggests that PLLA is degraded by an unzipping depolymerization process from the hydroxyl end of the polymer chains. In contrast, the thermal degradation behavior of PCL was very complex because various reactions occurred concurrently: post-polymerization, loss of structural regularities and random chain scissions.


Mail address: Jose Ramon Sarasua, Euskal Herriko Unibertsitatea-Universidad del Pais Vasco (EHU-UPV). Departmento de Ingenieria Minera y Metalúrgica y Ciencia de los Materiales, Escuela Técnica Superior de Ingenieria, 48013 Bilbao, Spain. E-mail:

References

Abe, H., et al., “Effects of Residual Zinc Compounds and Chain-end Structure on Thermal Degradation of Poly(∊-caprolactone)”, Biomacromolecules, 5, 14801488 (2004)10.1021/bm049945pSearch in Google Scholar

Abe, H., et al., “Thermal Degradation Processes of End-Capped Poly(L-lactide)s in the Presence and Absence of Residual Zinc Catalyst”, Biomacromolecules, 5, 16061614 (2004)10.1021/bm0497872Search in Google Scholar

Andriano, K., et al., “Processing and Characterization of Absorbable Polylactide Polymers for Use in Surgical Implants”, J. Appl. Biomater., 5, 133140 (1994)10.1002/jab.770050206Search in Google Scholar

Aoyagi, Y., et al., “Thermal Degradation of Poly[(R)-3-hydroxybutyrate], Poly[∊-caprolactone], and Poly[(S)-lactide]”, Polym. Degrad. Stab., 76, 5359 (2002)10.1016/S0141-3910(01)00265-8Search in Google Scholar

Assadi, R., et al., “Irreversible Structural Changes during PET Recycling by Extrusion”, Polymer, 45, 44034412 (2004)10.1016/j.polymer.2004.04.029Search in Google Scholar

Brostroem, J., et al., “Biodegradable Films of Partly Branched Poly(L-lactide)-co-poly(∊-caprolactone) Copolymer: Modulation of Phase Morphology, Plasticization Properties and Thermal Depolymerization”, Biomacromolecules, 5, 11241134 (2004)10.1021/bm049920qSearch in Google Scholar

Di Maioa, E., et al., “Isothermal Cystallization in PCL/clay Nonocomposites Investigated with Thermal and Rheometric Methods”, Polymer, 45, 88938900 (2004)10.1016/j.polymer.2004.10.037Search in Google Scholar

Dwan, I., et al., “Hydrolytic and Thermal Degradation of Random Copolyesters of ∊-caprolactone and 2-oxepane-1,5-dione”, Macromol. Chem. Phys., 204, 11911201 (2003)10.1002/macp.200390092Search in Google Scholar

Engerberg, I., Kohn, J., “Physico-mechanical Properties of Degradable Polymers used in Medical Applications: A Comparative Study”, Biomaterials, 12, 292304 (1991)10.1016/0142-9612(91)90037-BSearch in Google Scholar

Hideto, T., Ippei, F., “Enhanced Thermal Stability of Poly(lactide)s in the Melt by Enantiomeric Polymer Blending”, Polymer, 44, 28912896 (2003)10.1016/S0032-3861(03)00175-7Search in Google Scholar

Hofmann, G., Wagner, F., “New Implant Designs for Bioresorbable Devices In Orthopaedic Surgery”, Clin. Mat., 14, 207215 (1993)10.1016/0267-6605(93)90004-QSearch in Google Scholar

Li, S., et al., “Hydrolytic Degradation of Poly(DL-lactic acid) Further Investigations”, Polymer Preprints, 37, 133134 (1996)Search in Google Scholar

Persenaire, O., Alexandre, M., Degee, P., Dubois, P., “Mechanisms and Kinetics of Thermal Degradation of Poly(∊-caprolactone)”, Biomacromolecules, 2, 288294 (2001)10.1021/bm0056310Search in Google Scholar

Placketta, D., et al., “Biodegradable Composites based on L-polylactide and Jute Fibres”, Compos. Sci. Technol., 63, 12871296 (2003)10.1016/S0266-3538(03)00100-3Search in Google Scholar

Raquez, J.-M., et al., “Diblock Copolymers based on 1,4-dioxan-2-one and ∊-Caprolactone: Characterization and Thermal Properties”, Macromol. Chem. Phys.”, 205, 17641773 (2004)Search in Google Scholar

Ruseckaite, R.-A., Jimenez, A., “Thermal Degradation of Mixtures of Polycaprolactone with Cellulose Derivatives”, Polym. Degrad. Stab., 81, 353358 (2003)10.1016/S0141-3910(03)00106-XSearch in Google Scholar

Saito, O.: “Chapter 11 The Radiation Chemistry of Macromolecules”, in: Dole, M., (Ed.), Vol. 1, Academic Press, New York (1972)Search in Google Scholar

Sarasua, J.-R., et al., “Crystallinity and Mechanical Properties of Optically Pure Polylactides and Their Blends”, Polym. Eng. Sci., 45, 745753 (2005)10.1002/pen.20331Search in Google Scholar

Sarasua, J.-R., et al., “Crystallization, Morphology, and Mechanical Behavior of Polylactide/Poly(∊-caprolactone) Blends”, Polym. Eng. Sci., 46, 12991308 (2006)10.1002/pen.20609Search in Google Scholar

Schindler, A., Harper, J., “Polylactide. II. Viscosity-molecular Weight Relationships and Unperturbed Chain Dimensions”, J. Polym. Sci. Part A: Polym. Chem., 17, 25932599 (1979)10.1002/pol.1979.170170831Search in Google Scholar

Schindler, A., et al., “Aliphatic Polyesters. III. Molecular Weight and Molecular Weight Distribution in Alcohol-Initiated Polymerizations of ∊-caprolactone”, J. Polym. Sci. Part A: Polym. Chem., 20, 319326 (1982)10.1002/pol.1982.170200206Search in Google Scholar

Shirahase, T., et al., “Miscibility and Hydrolytic Degradation in Alkaline Solution of Poly(L-lactide) and Poly(methyl methacrylate) Blends”, Polymer, 47, 48394844 (2006)10.1016/j.polymer.2006.04.012Search in Google Scholar

Sivalingam, G., et al., “Kinetics of Thermal Degradation of Poly(∊-caprolactone)”, J. Anal. Appl. Pyrolysis, 70, 631647 (2003)10.1016/S0165-2370(03)00045-7Search in Google Scholar

Sivalingam, G., et al., “Blends of Poly(∊-caprolactone) and Poly(vinyl acetate): Mechanical Properties and Thermal Degradation”, Polym. Degrad. Stab., 84, 345351 (2004)10.1016/j.polymdegradstab.2004.01.011Search in Google Scholar

Sivalingam, G., Madras, G., “Thermal Degradation of Binary Physical Mixtures and Copolymers of Poly(∊-caprolactone), Poly(D, L-lactide), Poly(glycolide)”, Polym. Degrad. Stab., 84, 393398 (2004)10.1016/j.polymdegradstab.2003.12.008Search in Google Scholar

Sivalingam, G., Madras, G., “Thermal Degradation of Ternary Blends of Poly(e-ocaprolactone)/Poly(vinyl acetate)/Poly(vinyl chloride)”, J. Appl. Polym. Sci., 93, 13781383 (2004)10.1002/app.20587Search in Google Scholar

Sivalingam, G., et al., “Enzymatic and Thermal Degradation of Poly(∊-caprolactone), Poly(D, L-lactide), and Their Blends”, Ind. Eng. Chem. Res., 43, 77027709 (2004)10.1021/ie049589rSearch in Google Scholar

Soedergard, A., Naesman, J.-H., “Stabilization of Poly(L-lactide) in the Melt”, Polym. Degrad. Stab., 46, 2530 (1994)10.1016/0141-3910(94)90104-XSearch in Google Scholar

Suprakas, S.-R., et al., “New Polylactide-layered Silicate Nanocomposites. 2. Concurrent Improvements of Material Properties, Biodegradability and Melt Rheology”, Polymer, 44, 857866 (2003)10.1016/S0032-3861(02)00818-2Search in Google Scholar

Taubner, V., Shishoo, R.Influence of Processing Parameters on the Degradation of Poly(L-lactide) during Extrusion”, J. Appl. Polym. Sci., 79, 21282135 (2001)10.1002/1097-4628(20010321)79:12<2128::AID-APP1020>3.0.CO;2-#Search in Google Scholar

Woo, S., et al., “Biomechanics of Knee Ligament Healing, Repair and Reconstruction”, J. Biomechanics, 30, 431439 (1997)10.1016/S0021-9290(96)00168-6Search in Google Scholar

Received: 2007-5-3
Accepted: 2007-7-25
Published Online: 2013-04-06
Published in Print: 2007-12-01

© 2007, Carl Hanser Verlag, Munich

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Special Issue on Biobased Polymers
  5. Invited Papers
  6. Crystallization and Mechanical Propertiesof Poly (D, L) Lactide-based Blown Films
  7. Rheological Behavior and Modeling of Thermal Degradation of Poly(∊-Caprolactone) and Poly(L-Lactide)
  8. Rheological Evaluation and Observations of Extrusion Instabilities of Biodegradable Polyesters
  9. Biaxial Orientation of Polylactide/Thermoplastic Starch Blends
  10. Effects of Starch Types on Mechanical Properties of Poly(lactic acid)/Starch Composites
  11. Solid and Microcellular Polylactide-Carbon Nanotube Nanocomposites
  12. Tapioca Starch-poly (lactic acid)-based Nanocomposite Foams as Affected by Type of Nanoclay
  13. Injection Molded Solid and Microcellular Polylactide Compounded with Recycled Paper Shopping Bag Fibers
  14. Fabrication of Porous 3-D Structure from Poly(L-lactide)-based Nanocomposite Foam via Enzymatic Degradation
  15. The Linear Viscoelastic Behavior of a Series of 3-Hydroxybutyrate-based Copolymers
  16. New Developments in Biodegradable Starch-based Nanocomposites
  17. Viscous Properties of Thermoplastic Starches from Different Botanical Origin
  18. Thermoplastic Foams from Zein and Gelatin
  19. Improvement of the Mechanical Properties of Soy Protein Isolate Based Plastics through Formulation and Processing
  20. Biocomposites Based on Bacterial Cellulose and Apple and Radish Pulp
  21. Preparation and Properties of Metallocene-catalyzed PE/Starch Nanocomposites: Role of Nanocompatibilizer
  22. Evaluation of Properties and Biodeterioration Potential of Polyethylene and Aliphatic Polyester Blends
  23. PPS News
  24. PPP News
  25. Seikei-Kakou Abstracts
  26. Seikei-Kakou Abstracts
Downloaded on 30.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/217.2067/html?lang=en
Scroll to top button