Processing of Biodegradable Polymer Composites as A Drug Delivery System in Vitro
-
S.-J. Liu
, C.-H. Tsai , S.-S. Lin and S. W.-N. Ueng
Abstract
This report explores the alternative of processing biodegradable polymer-antibiotic composites as a long-term drug release. Polymer-antibiotic composite beads were manufactured by a compression-sintering technique. An elution method was employed to characterize the release rate of antibiotic over a 35-day period at 37°C. Biodegradable polymer composites released high concentrations of antibiotic (well above the breakpoint sensitivity concentration) in vitro for the period of time needed to treat bone infection; i.e. 4 to 6 weeks. By changing the processing variables, one is able to control the release rate of the beads. This provides advantages of meeting the specific antibiotic requirement for patients with various surgical infections.
© 1999, Carl Hanser Verlag, Munich
Articles in the same Issue
- Editorial
- Fifth of a Series: Pioneer of Polymer Processing John Wesley Hyatt (1837–1920)
- Internal Mixer
- Modeling the Distributive Mixing in an Internal Batch Mixer
- Biomedical Engineering
- Processing of Biodegradable Polymer Composites as A Drug Delivery System in Vitro
- Fibers and Films
- Tensile Force Measurements in the PA 6 High Speed Fiber Spinning and their Utility
- Crosslinking Modification of UHMWPE Fibers by Ultra-violet Irradiation
- Effect of Wall Slip on Rheotens Mastercurves for Linear PE Melts
- Stability of a Blown Film Extrusion Process
- Molding
- Blank Design and Fiber Orientation Distribution During Compression Molding of GMT
- Injection Moulding of a Commercial β-Nucleated Polypropylene
- Weld Line Strength in PC/ABS Injection Moldings
- Computer Controlled Rotational Molding of a Hollow Femur for 3-D Photoelastic Analysis
- Residual Stresses and Birefringence in Injection Molding of Semicrystalline Polymer
- Residual Stresses and Birefringence in Injection Molding of Semicrystalline Polymer
- Generalized Predictive Observer-Controller For Injection Moulding
- Fiber Orientation in 3-D Injection Molded Features
Articles in the same Issue
- Editorial
- Fifth of a Series: Pioneer of Polymer Processing John Wesley Hyatt (1837–1920)
- Internal Mixer
- Modeling the Distributive Mixing in an Internal Batch Mixer
- Biomedical Engineering
- Processing of Biodegradable Polymer Composites as A Drug Delivery System in Vitro
- Fibers and Films
- Tensile Force Measurements in the PA 6 High Speed Fiber Spinning and their Utility
- Crosslinking Modification of UHMWPE Fibers by Ultra-violet Irradiation
- Effect of Wall Slip on Rheotens Mastercurves for Linear PE Melts
- Stability of a Blown Film Extrusion Process
- Molding
- Blank Design and Fiber Orientation Distribution During Compression Molding of GMT
- Injection Moulding of a Commercial β-Nucleated Polypropylene
- Weld Line Strength in PC/ABS Injection Moldings
- Computer Controlled Rotational Molding of a Hollow Femur for 3-D Photoelastic Analysis
- Residual Stresses and Birefringence in Injection Molding of Semicrystalline Polymer
- Residual Stresses and Birefringence in Injection Molding of Semicrystalline Polymer
- Generalized Predictive Observer-Controller For Injection Moulding
- Fiber Orientation in 3-D Injection Molded Features