Modeling the Distributive Mixing in an Internal Batch Mixer
-
B. C. Hutchinson
Abstract
Mixing has been the focal point of many experimental studies in recent years, but advances in modeling and simulation now allow for fast, accurate and useful simulation analysis. Numerous mixing indices have been developed but the majority are tailored to experimental studies. In this study, a new mixing index is developed to analyze the particle position history of the mixer. Due to its simplicity when dealing with moving boundary problems, the boundary element method is employed to model the fluid flow and track particles.
Numerous geometries can be modeled and compared on a basic workstation. First the mixing index is applied to Couette flow. Analytical and boundary element simulation results compare well. Next the method is used to analyze the mixing capabilities of a Banbury mixer with different speed ratios. Further the mixing index is used to compare the mixing capabilities of triangular mixing lobes versus typical Banbury type.
© 1999, Carl Hanser Verlag, Munich
Articles in the same Issue
- Editorial
- Fifth of a Series: Pioneer of Polymer Processing John Wesley Hyatt (1837–1920)
- Internal Mixer
- Modeling the Distributive Mixing in an Internal Batch Mixer
- Biomedical Engineering
- Processing of Biodegradable Polymer Composites as A Drug Delivery System in Vitro
- Fibers and Films
- Tensile Force Measurements in the PA 6 High Speed Fiber Spinning and their Utility
- Crosslinking Modification of UHMWPE Fibers by Ultra-violet Irradiation
- Effect of Wall Slip on Rheotens Mastercurves for Linear PE Melts
- Stability of a Blown Film Extrusion Process
- Molding
- Blank Design and Fiber Orientation Distribution During Compression Molding of GMT
- Injection Moulding of a Commercial β-Nucleated Polypropylene
- Weld Line Strength in PC/ABS Injection Moldings
- Computer Controlled Rotational Molding of a Hollow Femur for 3-D Photoelastic Analysis
- Residual Stresses and Birefringence in Injection Molding of Semicrystalline Polymer
- Residual Stresses and Birefringence in Injection Molding of Semicrystalline Polymer
- Generalized Predictive Observer-Controller For Injection Moulding
- Fiber Orientation in 3-D Injection Molded Features
Articles in the same Issue
- Editorial
- Fifth of a Series: Pioneer of Polymer Processing John Wesley Hyatt (1837–1920)
- Internal Mixer
- Modeling the Distributive Mixing in an Internal Batch Mixer
- Biomedical Engineering
- Processing of Biodegradable Polymer Composites as A Drug Delivery System in Vitro
- Fibers and Films
- Tensile Force Measurements in the PA 6 High Speed Fiber Spinning and their Utility
- Crosslinking Modification of UHMWPE Fibers by Ultra-violet Irradiation
- Effect of Wall Slip on Rheotens Mastercurves for Linear PE Melts
- Stability of a Blown Film Extrusion Process
- Molding
- Blank Design and Fiber Orientation Distribution During Compression Molding of GMT
- Injection Moulding of a Commercial β-Nucleated Polypropylene
- Weld Line Strength in PC/ABS Injection Moldings
- Computer Controlled Rotational Molding of a Hollow Femur for 3-D Photoelastic Analysis
- Residual Stresses and Birefringence in Injection Molding of Semicrystalline Polymer
- Residual Stresses and Birefringence in Injection Molding of Semicrystalline Polymer
- Generalized Predictive Observer-Controller For Injection Moulding
- Fiber Orientation in 3-D Injection Molded Features