Screw Drive Power of Single Screw Plasticating Units With Smooth Barrels
-
H. Potente
Abstract
In this contribution the computation of the drive power of single screw machines with smooth feed sections for extruders and injection molding machines will be presented. The drive power will be determined by means of the shear stresses at the barrel wall for the completely melt-filled channels as well as for the polymer melting section of the screw. In order to determine the shear stress and thus the power consumption the correct velocity profiles in the screw channels must be known, taking into account the non-Newtonian flow behavior of the polymer melt. For analytical solutions of this problem extreme simplifications are necessary. For this reason approximation equations are set up, which are based on numerical tests and by means of which a reliable determination of the screwdrive power is possible, knowing the throughput, the temperature development across the screwas well as the melting proile.
© 1999, Carl Hanser Verlag, Munich
Artikel in diesem Heft
- Regular Contributed Articles
- Polymer Processing Problems from Non-Rheological Causes1
- Utilization of Rheology Control to Develop Wood-Grain Patterned PVC/Wood Flour Composites
- Screw Drive Power of Single Screw Plasticating Units With Smooth Barrels
- Design of Dispersive Mixing Devices
- Dynamic Performance of Single-Screws of Different Configurations
- A Comparative Study of Residence Time Distributions in a Kneader, Continuous Mixer, and Modular Intermeshing Co-Rotating and Counter-Rotating Twin Screw Extruders
- Influence of a ‘Rotating Tip’ on the Properties of Tubing Made Using a Cross-Head Tubing Die
- Modelling of Capillary Rheometer Data and Extrapolation of the Viscosity Function into the Linear Viscoelastic Region
- Relationship Between Structure and Spinning Processing of As-Spun PP Fibres
- Rheological and Theoretical Estimation of the Spinnability of Polyolefines
- Drawing of β-Crystal Nucleator-Added PP
- Wave Behavior in the Coating Process of Multilayer Polymeric Materials
- Process Optimization of Thermoforming PP/CaCO3 Composites
- A Stiffness Criterion For Cooling Time Estimation
Artikel in diesem Heft
- Regular Contributed Articles
- Polymer Processing Problems from Non-Rheological Causes1
- Utilization of Rheology Control to Develop Wood-Grain Patterned PVC/Wood Flour Composites
- Screw Drive Power of Single Screw Plasticating Units With Smooth Barrels
- Design of Dispersive Mixing Devices
- Dynamic Performance of Single-Screws of Different Configurations
- A Comparative Study of Residence Time Distributions in a Kneader, Continuous Mixer, and Modular Intermeshing Co-Rotating and Counter-Rotating Twin Screw Extruders
- Influence of a ‘Rotating Tip’ on the Properties of Tubing Made Using a Cross-Head Tubing Die
- Modelling of Capillary Rheometer Data and Extrapolation of the Viscosity Function into the Linear Viscoelastic Region
- Relationship Between Structure and Spinning Processing of As-Spun PP Fibres
- Rheological and Theoretical Estimation of the Spinnability of Polyolefines
- Drawing of β-Crystal Nucleator-Added PP
- Wave Behavior in the Coating Process of Multilayer Polymeric Materials
- Process Optimization of Thermoforming PP/CaCO3 Composites
- A Stiffness Criterion For Cooling Time Estimation