Startseite Materialographic Microstructural Analysis during the Process Development for the Gas Phase Synthesis of Silicon Carbide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Materialographic Microstructural Analysis during the Process Development for the Gas Phase Synthesis of Silicon Carbide

  • J. Edelbauer , C. Sinz , O. Lott , A. Nagel und W. Rimkus
Veröffentlicht/Copyright: 22. August 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Silicon carbide is a superior material for the manufacturing of semiconductors. This is where the project on the gaseous phase synthesis of SiC components made of carbon precursors comes in. On the basis of graphite substrates and a reaction with thermally evaporated silicon monoxide in the CVI process (chemical vapor infiltration), silicon carbide with strongly process dependent structural composition is formed. The process can be used for the coating of C substrates as well as for the manufacturing of complex components. With the help of new approaches in process development and via detailed materialographic microstructural analysis, the understanding of gaseous phase synthesis was promoted. The transition of different carbon structures in equivalent silicon carbide structures was verified.

Kurzfassung

Siliciumcarbid stellt einen überlegenen Werkstoff als Betriebsmittel für die Halbleiterherstellung dar. Das Projekt zur Gasphasensynthese von SiC-Bauteilen aus Kohlenstoff-Vorprodukten setzt hier an. Ausgehend von Graphitsubstraten und einer Reaktion mit thermisch verdampftem Siliziummonoxid im CVI-Prozess (chemical vapour infiltration) entsteht Siliciumcarbid mit stark prozessabhängiger Gefügeausbildung. Der Prozess kann sowohl zur Beschichtung von C-Substraten, als auch zur Herstellung von komplexen Bauteilen genutzt werden. Mit neuen Ansätzen in der Prozessentwicklung und mittels detaillierter materialographischer Gefügeanalysen wurde das Verständnis zur Gasphasensynthese vorangebracht. Die Umsetzung von verschiedenen Kohlenstoffstrukturen in entsprechende Siliciumcarbid-Strukturen wurde nachgewiesen.


Translation: M. Lackas


References / Literatur

[1] Information on http://www.schunk-carbontechnology.com/fileadmin/Redakteur/Mediathek/Broschueren/SchunkCarbonTechnology/MechanicalCarbon/Schunk-Carbon-Technology-Herstellung-Eigenschaften-Kohlenstoffwerkstoffe-DE.pdfSuche in Google Scholar

[2] Kriegesmann, J.: Technische Keramik: Ein neuer Werkstoff mit hoher Innovation für “High-Tech”-Bereiche: Elektronik, Motorenbau, Chemie/Verfahrenstechnik, Maschinenbau; [Jahrbuch], second. Ausg, Vulkan-Verl., Essen, 1990.Suche in Google Scholar

[3] Information on https://www.ceramtec.de/anwendung/gleitringe-lager-dichtungen/automobilbau/Suche in Google Scholar

[4] Paccaud, O.; Derre, A.: Silicon Carbide Coating by Reactive Pack Cementation – Part I: Silicon Carbide/Silica Interaction, in: Chemical Vapor Deposition2000, 3340.10.1002/(SICI)1521-3862(200002)6:1<33::AID-CVDE33>3.0.CO;2-ZSuche in Google Scholar

[5] Qian-Gang, F.; He-Jun, L.; Xiao-Hong, S.; Ke-Zhi, L.; Chuang, W.; Min, H.: Double-layer oxidation protective SiC/glass coatings for carbon/carbon composites, Surface and Coatings Technology, 200: 34733477, 2006. 10.1016/j.surfcoat.2004.11.022Suche in Google Scholar

[6] Biernacki, J.J.; Wotzak, G.P.: Stoichiometry of the C+SiO2 reaction, Journal of the American Ceramic Society72, 122129, 1989. 10.1111/j.1151-2916.1989.tb05964.xSuche in Google Scholar

[7] Dutta, S.: Effects of varoius consolidation techniques on microstructure, strength and reliability of alpha-SiC, Ceramic Transactions2, 215226 Silicon Carbide´87, 1989.Suche in Google Scholar

[8] Salmang, H.; Scholze, H.; Telle, R.: Keramik (German Edition), Springer, Dordrecht, 2007.Suche in Google Scholar

[9] Vogli, E.; Mukerji, J.; Hoffman, C.; Kladny, R.; Sieber, H.; Greil, P.: Conversion of Oak to Cellular Silicon Carbide Ceramic by Gas-Phase Reaction with Silicon Monoxide, in: Journal of the American Cermic Society, 2001, 12361240. 10.1111/j.1151-2916.2001.tb00822.xSuche in Google Scholar

[10] Paccaud, O.; Derre, A.: Silicon Carbide Coating by Reactive Pack Cementation – Part II: Silicon Monixide/Carbon Reaction, in: Chemical Vapor Deposition2000, 4150.10.1002/(SICI)1521-3862(200002)6:1<41::AID-CVDE41>3.0.CO;2-8Suche in Google Scholar

[11] Schulte-Fischedick, J.; Zern, A.; Mayer, J.; Rühle, M.; Frieß, M.; Krenkel, W.; Kochendörfer, R.: The morphology of silicon carbide in C/C-SiC composites, Materials Science and Engineering A332 (2002) 146152 (2001).10.1016/S0921-5093(01)01719-1Suche in Google Scholar

[12] Zhao, J.; Wang, G.; Guo, Q.; Liu, L.: Microstructure and property of SiC coating for carbon materials, Fusion Engineering and Design82 (2007) 363368. 10.1016/j.fusengdes.2007.03.001Suche in Google Scholar

[13] Qian-Gang, F.; He-Jun, L.; Xiao-Hong, S.; Ke-Zhi, L.; Guo-Dong, S.: Silicon crabide coating to protect carbon/carbon composites against oxidation, Scripta Materialia52 (2005) 923927 (2005).Suche in Google Scholar

[14] Kwon, O.-S.; Hong, S.-H.; Kim, H.: The improvement in oxidation resistance of carbon by a graded SiC/SiO2 coating, Journal of the European Ceramic Society23 (2003) 31193124. 10.1016/S0955-2219(03)00098-0Suche in Google Scholar

Received: 2017-07-10
Accepted: 2017-07-12
Published Online: 2017-08-22
Published in Print: 2017-09-04

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/147.110480/html
Button zum nach oben scrollen