Home Microscopic Investigation of Pitting Corrosion in Plasma Nitrided Austenitic Stainless Steel
Article
Licensed
Unlicensed Requires Authentication

Microscopic Investigation of Pitting Corrosion in Plasma Nitrided Austenitic Stainless Steel

  • L. Escalada , S. P. Brühl and S. N. Simison
Published/Copyright: September 4, 2014
Become an author with De Gruyter Brill

Abstract

UNS 31603 austenitic stainless steel was nitrided using different techniques, and pitting corrosion resistance was analysed in a chloride solution. All nitriding techniques, LEII, PI· and convectional DC nitriding produced a nitrided layer called S phase which is corrosion resistant. Pits morphology and layer structure was investigated using optical and electronic microscopy, SEM-FIB, EDS, and a 3D reconstruction of a pit was assessed using FIB tomography. It was concluded that pits are initiated in MnS inclusions and a channel was generated passing through the nitrided layer, connecting the steel with the electrolyte. Base alloy dissolution was observed beneath the nitrided layer.

Kurzfassung

Austenitischer Stahl UNS 31603 wurde unter Anwendung verschiedener Techniken nitriert und seine Beständigkeit gegenüber Lochkorrosion in einer Chloridlösung untersucht. Alle Nitriertechniken – LEII, PI·und herkömmliches Nitrieren im DC-Plasma – führten zur Ausbildung einer korrosionsbeständigen, „S-Phase“ genannten Nitrierschicht. Die Morphologie der Grübchen und die Schichtstruktur wurden mikroskopisch unter Einsatz optischer Mikroskopie, Elektronenmikroskopie, REM-FIB und mittels EDX untersucht und eine 3D-Rekonstruktion eines Grübchens mittels FIB-Tomographie ausgewertet. Wir kamen zu dem Ergebnis, dass die Grübchen ihren Ursprung in MnS-Einschlüssen nehmen. Ferner bildete sich ein durch die Nitrierschicht verlaufender Kanal und somit eine Verbindung Stahl/Elektrolyt. Unterhalb der Nitrierschicht konnte eine Auflösung der Ausgangslegierung beobachtet werden.


Übersetzung: E. Engert


References / Literatur

[1] Fossati, A.; Borgioli, F.; Galvanetto, E.; Bacci, T.: Corrosion resistance properties of glow-discharge nitrided AISI 316L austenitic stainless steel in NaCl solutions, Corrosion Science, Vol. 48 (2006), p. 15131527. 10.1016/j.corsci.2005.06.006Search in Google Scholar

[2] Escalada, L.; Lutz, J.; Mändl, S.; Manova, D.; Neumann, H.; Simison, S.: Corrosion properties of stainless steel 316L after energetic nitrogen insertion, Surface and Coatings Technology, Vol. 211 (2012), p. 7679. 10.1016/j.surfcoat.2011.09.073Search in Google Scholar

[3] Gil, L.; Brühl, S.; Jiménez, L.; Leon, O.; Guevara, R.; Staia, M. H.: Corrosion performance of the plasma nitrided 316L stainless steel, Surface and Coatings Technology, Vol. 201 (2006), p. 44244429. 10.1016/j.surfcoat.2006.08.081Search in Google Scholar

[4] Li, C. X.; Bell, T.: Corrosion properties of active screen plasma nitrided 316 austenitic stainless steel, Corrosion Science, Vol. 46 (2004), p. 15271547. 10.1016/j.corsci.2003.09.015Search in Google Scholar

[5] Wei, R.; Vajo, J. J.; Matossian, J. N.; Wilbur, P. J.; Davis, J. A.; Williamson, D. L.; Collins, G. A.: A comparative study of beam ion implantation, plasma ion implantation and nitriding of AISI 304 stainless steel, Surface and Coatings Technology, Vol. 83 (1996), p. 235242. 10.1016/0257-8972(95)02825-0Search in Google Scholar

[6] Bell, T.: Current Status of Supersaturated Surface Egineered S-phase Materials, Key Engineering Materials, Vol. 373–374 (2008), p. 289295.Search in Google Scholar

[7] Mingolo, N.; Tschiptschin, A. P.; Pinedo, C. E.: On the formation of expanded austenite during plasma nitriding of an AISI 316L austenitic stainless steel, Surface and Coatings Technology; Vol. 201 (2006), p. 42154218. 10.1016/j.surfcoat.2006.08.060Search in Google Scholar

[8] Blawert, C.; Kalvelage, H.; Mordike, B. L.; Collins, G. A.; Short, K. T.; Jirásková, Y.; Schneeweiss, O.: Nitrogen and carbon expanded austenite produced by PI3, Surface and Coatings Technology, Vol. 136 (2001), p. 18118710.1016/S0257-8972(00)01050-1Search in Google Scholar

[9] Mändl, S.; Manova, D.; Neumann, H.; Pham, M. T.; Richter, E.; Rauschenbach, B.: Correlation between PIII nitriding parameters and corrosion behaviour of austenitic stainless steels, Surface & Coatings Technology, Vol. 200 (2005) p. 104108. 10.1016/j.surfcoat.2005.02.084Search in Google Scholar

[10] Gjønnes, A. W.: Effect of Sulfide Inclusions in Austenitic Stainless Steel on the Initiation of Pitting in Base Metal and Heat Affected Zone after Welding, Master Thesis, Norwegian University of Science and Technology, June 14, 2012.Search in Google Scholar

Received: 2014-05-12
Accepted: 2014-07-04
Published Online: 2014-09-04
Published in Print: 2014-09-08

© 2014, Carl Hanser Verlag, München

Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/147.110303/html?lang=en
Scroll to top button